BigEarthNet是一个新的大规模Sentinel-2基准档案,由590,326个Sentinel-2图像斑块组成。...为了构建BigEarthNet,最初选择了2017年6月至2018年5月期间在欧洲10个国家(奥地利、比利时、芬兰、爱尔兰、科索沃、立陶宛、卢森堡、葡萄牙、塞尔维亚、瑞士)获得的125张Sentinel...然后,它们被划分为590,326个不重叠的图像斑块。每个图像斑块都由2018年CORINE土地覆盖数据库(CLC 2018)提供的多个土地覆盖类别(即多标签)进行注释。
本次的练习是:如下图1所示,工作表中有11组数据,每组数据有6个数字,现在要统计多少组相同的数据,怎么使用公式实现?注意,每组中的数据可以是任意顺序。 ?...对于H2中的公式,其生成的数组如下图4所示。 ? 图4 MMULT函数将返回一个1行11列的数组,其元素值代表每行匹配的数字个数。...这样传递给它的第一个数组是一个1行6列的由1组成的数组,第二个数组为上述生成的数组转置为一个6行11列的数组。...FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE} 传递给SUM函数,得到结果: 1 即只有公式所在行本身与其匹配,没有找到与该行重复的行...s行n列的行列式相乘,结果为m行n列的行列式,也就是说,两个相乘的行列式中第一个的列数与第二个的行数相等。
一 全卷积神经网络 文章所有代码已上传至github,觉得好用就给个star吧,谢谢 https://github.com/315386775/FCN_train 深度学习图像分割(FCN)训练自己的模型大致可以以下三步...: 1.为自己的数据制作label; 2.将自己的数据分为train,val和test集; 3.仿照voc_lyaers.py编写自己的输入数据层。...其中主要是如何制作自己的数据label困扰着大家。...补充:由于图像大小的限制,这里给几个图像Resize的脚本: (1)单张图片的resize # coding = utf-8 import Image def convert(width,height...第三步:最关键的一步 需要注意的是,label文件要是gray格式,不然会出错:scores层输出与label的数据尺寸不一致,通道问题导致的,看下面的输出是否与VOC输出一致。
图 1:在 CIFAR100 数据集上执行 ViR 和 ViT 的时间消耗比较。与未经预训练的 ViT 相比,ViR 的初始准确性和最终准确性均有所提高。深度 ViR 是并行结构。...图 2 描述了所提出的图像分类模型,其关键组成部分是 ViR 的核心,该核心由具有上述内部拓扑结构的储备池和残差 block 组成。...通过进一步堆栈储备池,研究者获得了深度的 ViR,进一步增强了网络性能。如下图 4 所示,第一个是由 L 储备池组成的系列储备池。 图 4:深度 ViR 的结构。...实验 研究者在 MNIST、 CIFAR10 和 CIFAR100 三个经典数据集上,对所提出的 ViR 模型和常用的 ViT 模型进行了对比。...图 6:MNIST 和 CIFAR100 数据集在 4 × 4、14 × 14 和 16 × 16patch size 下的内存占用比较。
机器之心报道 如果你想训练一个内容审核系统过滤不合适的信息,或用 GAN 实现一些大胆的想法,那么数据集是必不可少的。但限制级图像很难收集,也很少会开源。...在这个项目中,作者构建了一个大型高质量图像鉴黄数据集,它有超过 158 万张图像,共分为 159 个大类别,且每一个类别还有若干子类别。...如下所示为简单的数据示例,因为本文这个数据集尺度有点大,我们以 nsfw_data_scrapper 数据集为例: ?...数据集统计信息 raw_data 文件夹中可以找到不同类别及对应的 TXT 文本,以下是关于该数据集的一些统计信息: 159 个不同的类别 158.9331 万个 URL 下载并清洗后大约有 500GB...下载之后最好清洗一下数据集,如: 删除重复图像 移除被禁止/删除的图片(它们会产生一个特殊的图像占位符) 找出损坏的数据并将其移除 2.
队列框架下的tf.train.batch和tf.train.shuffle_batch方法、在数据集框架中,shuffle和batch操作由两个方法独立实现:dataset = dataset.shuffle...batch方法的参数batch_size代表要输出的每个batch由多少条数据组成。如果数据集中包含多个张量,那么batch操作将对每一个张量分开进行。...repeat是另一个常用的操作方法。这个方法数据集中的数据复制多份,其中每一份数据被称为一个epoch。dataset = dataset.repeat(N) # 将数据集重复N份。...在这个lambda表达式中# 我们首先将decoded_image在传入preprocess_for_train来进一步对图像数据进行预处理。# 然后再将处理好的图像和label组成最终输出。...在前述的中TRAINING_ROUNDS指定了训练的轮数,# 而这里指定了整个数据集重复的次数,它也间接的确定了训练的轮数。
为了帮助构建对象识别模型,场景识别模型等,编制了最佳图像分类数据集的列表。这些数据集的范围和大小各不相同,可以适应各种用例。此外数据集已分为以下几类:医学成像,农业和场景识别等。...CoastSat图像分类数据集 –用于开放源代码海岸线测绘工具,该数据集包含从卫星获取的航空图像。数据集还包括与标签有关的元数据。...Intel图像分类 –由Intel为图像分类竞赛而创建,此扩展图像数据集包含约25,000张图像。此外图像分为以下几类:建筑物,森林,冰川,山脉,海洋和街道。数据集已分为用于训练,测试和预测的文件夹。...TensorFlow Sun397图像分类数据集 –来自Tensorflow的另一个数据集,该数据集包含场景理解(SUN)基准中使用的108,000多幅图像。此外图像已分为397类。...图像分类:人和食物 –该数据集采用CSV格式,由吃食物的人的图像组成。人类注释者按性别和年龄对图像进行分类。CSV文件包含587行数据,URL链接到每个图像。
原文地址 https://www.kaggle.com/rajwardhanshinde/data-analysis-and-predicting-percentage/notebook 数据集包括8...import pandas as pd sp = pd.read_csv("StudentsPerformance.csv") #读入数据 sp.head() #查看数据前5行 sp.isnull()...sp['Grade'] = sp.apply(lambda x : Grading(x['Percentage']), axis=1) #这条语句没有看明白 sp.head(10) 第二步:简单的数据可视化...父母的教育水平是否会影响孩子的成绩 import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(20,10))...取得不同成绩的学生人数 plt.figure(figsize=(20,10)) sns.countplot(data=sp, x='Grade', order=['A','B','C','D','E',
NASA NEX-DCP30数据集由美国本土的降尺度气候情景组成,这些情景来自于在耦合模型相互比较项目第五阶段(CMIP5,见Taylor等人,2012年)下进行的一般循环模型(GCM)运行,以及为政府间气候变化专门委员会第五次评估报告...(IPCC AR5)制定的四种温室气体排放情景,即代表浓度路径(RCPs,见Meinshausen等人,2011)。...这些数据集的目的是提供一套高分辨率的、经过偏差校正的气候变化预测,可用于评估气候变化对那些对更精细的气候梯度和当地地形对气候条件影响敏感的过程的影响。...该数据集包含从1950年到2005年(回顾性运行)和从2006年到2099年(展望性运行)的每月预测。它包括来自33个模型的降尺度预测。并非每个情景都包含每个模型的预测。...NEX-DCP30由气候分析小组和NASA艾姆斯研究中心使用NASA地球交换系统编制,并由NASA气候模拟中心(NCCS)分发。
生成对抗网络(GAN)[19] 是由一对存在竞争关系的神经网络——生成器和判别器——组成的深度神经网络架构。...这些指标还是很理想主义的,因为无法在流形未知的自然图像数据上进行计算。实际上,[32] 中的评估方法也只能用在由灰度三角形组成的合成数据中。另一种用于比较 GAN 模型距离的是 SWD[25]。...对于这两种指标,我们都依赖神经网络架构来进行图像分类。为了计算 GAN-train,我们用 GAN 生成的图像训练了分类网络,然后在由真实图像组成的测试集上评估了其表现。...用 MNIST[30]、CIFAR10、CIFAR100[28] 和 ImageNet[14] 数据集评估了图像分类表现。实验结果表明,随着数据集复杂度的增加,GAN 图像的质量显著降低。...GAN-train 是在 S_g 上训练,在由真实图像组成的验证集 S_v 上测试的分类器的准确率。当 GAN 不够好的时候,GAN-train 会比在 S_t 上训练出来的分类器的验证准确率低。
德国慕尼黑工业大学分享的RGBD数据集。 下面是格式的样子: 1. rgb.txt 和 depth.txt 记录了各文件的采集时间和对应的文件名。.../data/datasets/rgbd-dataset/download 这个链接是全部的数据集下载位置。...深度图像按5000的因子进行缩放,即深度图像中5000的像素值对应距离相机1米,10000到2米距离等。像素值为0表示缺失值/没有数据。...Kinect 以不同步的方式提供颜色和深度图像。这意味着来自彩色图像的时间戳集与深度图像的时间戳不相交。因此,我们需要某种方式将彩色图像与深度图像相关联。...例如: 一幅画的尺寸是1024*768,深度为16,则它的数据量为1.5M。
现在结合torchvision和torchtext介绍torch中的内置数据集 Torchvision 中的数据集 MNIST MNIST 是一个由标准化和中心裁剪的手写图像组成的数据集。...CIFAR10 由 10 个不同标签的图像组成,而 CIFAR100 有 100 个不同的类。这些包括常见的图像,如卡车、青蛙、船、汽车、鹿等。...它由包括数字和字母的图像组成。如果您正在处理基于从图像中识别文本的问题,EMNIST是一个不错的选择。...它由分布在 10,000 个类别中的超过 120 万张图像组成。通常,这个数据集加载在高端硬件系统上,因为单独的 CPU 无法处理这么大的数据集。...下面将创建一个由数字和文本组成的简单自定义数据集。
arc-second (~800 m) version of this dataset please contact the provider at prism-questions@nacse.org PRISM日数据集和月数据集是美国本土的网格化气候数据集...,由俄勒冈州立大学的PRISM气候小组制作。...欲了解更多信息,请参见PRISM空间气候数据集的描述。 注意 警告。...这个数据集不应该被用来计算一个世纪的气候趋势,因为非气候的变化来自于台站设备和位置的变化,开放和关闭,不同的观测时间,以及使用相对短期的网络。更多细节请见数据集文件。...如需使用该数据集的30弧秒(~800米)版本,请与提供者联系,地址是:prism-questions@nacse.org Dataset Availability 1981-01-01T00:00:00
「@Author:Runsen」 在过去的几年里,许多深度学习模型涌现出来,例如层的类型、超参数等。在本系列中,我将回顾几个最显着的 deeplearn 图像分类的模型。...AlexNet 总共由八层组成,其中前5层是卷积层,后3层是全连接层。前两个卷积层连接到重叠的最大池化层以提取最大数量的特征。第三、四、五卷积层直接与全连接层相连。...VGG (2014) VGG 是一种流行的神经网络架构,由2014年,牛津大学的 Karen Simonyan 和 Andrew Zisserman 提出。...Inception 模块的末端连接到全局平均池化层。下面是完整 GoogleNet 架构的缩小图像。...然而,在DenseNet 中,每一层从所有前面的层获得额外的输入,并将其自己的特征映射传递给所有后续层。下面是描绘DenseNet 的图像。
这个产品是由GOES-16(也称为GOES-East)卫星的先进基线/全球地球观测系统(ABI)仪器生成的。STAR代表科学技术高级研究所,L2P代表Level 2产品,v2.70表示版本号。...这个数据产品包含了来自GOES-16卫星的高级图像和地球观测数据,用于气象预报、气候研究等领域。...),以及精确的传感器校准、图像导航和共配准、光谱保真度和复杂的预处理(地理校正、辐射均衡和制图)。...回归是根据 NOAA iQuam 系统(Xu 和 Ignatov,2014 年)中漂流浮标和热带系泊浮标的原地海温质量控制数据进行调整的。...随后对 10 分钟 FD 数据进行及时整理,生成 1 小时 L2P 产品,与单个 10 分钟图像相比,覆盖范围更广,云泄漏和图像噪声更小。
用于计算机视觉训练的图像数据集Labelme:由MIT计算机科学和人工智能实验室(CSAIL)创建的大型数据集,包含187,240张图像,62,197条带注释的图像和658,992张带标签的对象。...Visual Genome:它是一个数据集和知识库,旨在将结构化图像概念与语言联系起来。该数据库具有详细的视觉知识库,并带有108,077张图像的字幕。...Youtube-8M:带有标签的大规模数据集,由数百万个YouTube视频ID组成,带有超过3,800多个视觉实体的注释。...Flowers:在英国常见的花朵图像数据集,包含102个不同类别。每个花类包含40至258张图像,这些图像具有不同的姿势和光线变化。...CIFAR-10:包含60,000张32×32彩色图像的大型图像数据集,分为10类。数据集分为五个训练批次和一个测试批次,每个批次包含10,000张图像。
乔治亚理工学院 论文名称:Posterior Re-calibration for Imbalanced Datasets 原文作者:Junjiao Tian 内容提要 当训练标签分布严重不平衡以及测试数据与训练分布不一致时...为了解决由测试标签分布的不平衡引起的偏移问题,我们从最优贝叶斯分类器的角度出发,推导出一种训练后再平衡的技术,该技术可以通过基于KL-divergence的优化来解决。...该方法允许灵活的训练后超参数在验证集上有效地调整,并有效地修改分类器边缘来处理这种不平衡。...我们进一步将该方法与已有的似然偏移方法相结合,从贝叶斯的角度对其进行重新解释,证明我们的方法可以统一处理这两个问题。本文方法可以方便地用于底层架构不可知的概率分类问题。...我们在六个不同的数据集和五个不同的架构上进行了实验,包括大规模的不平衡数据集,例如用于分类的iNaturalist和用于语义分割的Synthia,结果证明了本文方法的先进性和准确性。
多模态对比语言图像预训练CLIP:打破语言与视觉的界限 一种基于多模态(图像、文本)对比训练的神经网络。它可以在给定图像的情况下,使用自然语言来预测最相关的文本片段,而无需为特定任务进行优化。...., jit=False) 返回模型和模型所需的TorchVision转换,由’ clip.available_models() ‘返回的模型名指定。它将根据需要下载模型。’...这可以用作模型的输入 ’ clip.load() '返回的模型支持以下方法: model.encode_image(image: Tensor) 给定一批图像,返回由CLIP模型的视觉部分编码的图像特征...model.encode_text(text: Tensor) 给定一批文本tokens,返回由CLIP模型的语言部分编码的文本特征。...本例从CIFAR-100数据集获取图像,并在数据集的100个文本标签中预测最可能的标签。
因此,需要一种解决方案来提高低分辨率图像中较小目标的检测精度。 研究贡献: 研究人员提出的体系结构由两部分组成:EESRGAN网络和检测器网络。...数据集:研究人员根据卫星图像(Bing地图)创建了OGST(油气储罐)数据集,该数据集的GSD为30 cm和1.2 m。...除了OGST数据集外,研究人员还将方法应用于COWC数据集(Cars Overhead with Context),以比较不同用例的检测性能。对于两个数据集,该方法均优于独立的最新研究结果。...研究过程: 本文旨在提高遥感图像上小目标的检测性能,作者提出了一种端到端网络结构,其由两个模块组成:基于GAN的SR网络和检测网络,整个网络以端到端的方式进行训练。...同时还需要探索不同的数据集和技术,以创造更真实的LR图像。总之,本文提出的方法结合了不同的策略,为LR图像上的小目标检测任务提供了更好的解决方案。
领取专属 10元无门槛券
手把手带您无忧上云