首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

CPLD与FPGA的区别

FPGA和CPLD是两种著名的数字逻辑芯片。当涉及到内部架构时,这两种芯片显然是不同的。FPGA:现场可编程门阵列,是一种可编程逻辑芯片。它是一个伟大的芯片,因为它可以被编程去做几乎任何一种数字功能。FPGA的架构允许芯片具有很高的逻辑容量。它被用于设计要求很高的门数和它们的延迟是相当不可预测的,因为它的结构。FPGA被认为是“细粒”,因为它包含了很多可以达到10万的微小逻辑块。这是人组合逻辑和记忆单元。它是为更复杂的应用而设计的。CPLD:采用EEPROM设计复杂的可编程逻辑器件。它更适合于小型门数设计,由于它的结构不太复杂,延迟是可以预测的,并且是非易失性的。CPLD通常用于简单的逻辑应用程序。它只包含几个逻辑模块,但更大——达到100个。话虽如此,CPLDs被认为是“粗粒”的设备。CPLDs由于其简单的“粗粮”架构,提供了一个更快的输出时间。也许,由于它更简单的架构,CPLD很便宜。虽然每门的价格比较便宜,但是FPGA的价格更贵。

01
您找到你想要的搜索结果了吗?
是的
没有找到

FPGA和CPLD的区别

1、FPGA(Field-Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 2、CPLD(Complex Programmable Logic Device)复杂可编程逻辑器件,是从PAL和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模集成电路范围。是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。 3、FPGA和CPLD的区别: ①CPLD更适合完成各种算法和组合逻辑,FPGA更适合于完成时序逻辑。换句话说,FPGA更适合于触发器丰富的结构,而CPLD更适合于触发器有限而乘积项丰富的结构。 ②CPLD的连续式布线结构决定了它的时序延迟是均匀的和可预测的,而FPGA的分段式布线结构决定了其延迟的不可预测性。 ③在编程上FPGA比CPLD具有更大的灵活性。CPLD通过修改具有固定内连电路的逻辑功能来编程,FPGA主要通过改变内部连线的布线来编程;FPGA可在逻辑门下编程,而CPLD是在逻辑块下编程。 ④FPGA的集成度比CPLD高,具有更复杂的布线结构和逻辑实现。 ⑤CPLD比FPGA使用起来更方便。CPLD的编程采用E2PROM或FASTFLASH技术,无需外部存储器芯片,使用简单。而FPGA的编程信息需存放在外部存储器上,使用方法复杂。 ⑥CPLD的速度比FPGA快,并且具有较大的时间可预测性。这是由于FPGA是门级编程,并且CLB之间采用分布式互联,而CPLD是逻辑块级编程,并且其逻辑块之间的互联是集总式的。 ⑦在编程方式上,CPLD主要是基于E2PROM或FLASH存储器编程,编程次数可达1万次,优点是系统断电时编程信息也不丢失。CPLD又可分为在编 程器上编程和在系统编程两类。FPGA大部分是基于SRAM编程,编程信息在系统断电时丢失,每次上电时,需从器件外部将编程数据重新写入SRAM中。其 优点是可以编程任意次,可在工作中快速编程,从而实现板级和系统级的动态配置。 ⑧CPLD保密性好,FPGA保密性差。 ⑨一般情况下,CPLD的功耗要比FPGA大,且集成度越高越明显。 随著复杂可编程逻辑器件(CPLD)密度的提高,数字器件设计人员在进行大型设计时,既灵活又容易,而且产品可以很快进入市常许多设计人员已经感受到 CPLD容易使用。时序可预测和速度高等优点,然而,在过去由于受到CPLD密度的限制,他们只好转向FPGA和ASIC。现在,设计人员可以体会到密度 高达数十万门的CPLD所带来的好处。

01

关于ASIC、CPLD和FPGA介绍

ASIC(Application Specific Intergrated Circuits)即专用集成电路,是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路。目前用CPLD(复杂可编程逻辑器件)和FPGA(现场可编程逻辑阵列)来进行ASIC设计是最为流行的方式之一,它们的共性是都具有用户现场可编程特性,都支持边界扫描技术,但两者在集成度、速度以及编程方式上具有各自的特点。ASIC的特点是面向特定用户的需求,品种多、批量少,要求设计和生产周期短,它作为集成电路技术与特定用户的整机或系统技术紧密结合的产物,与通用集成电路相比具有体积更小、重量更轻、功耗更低、可靠性提高、性能提高、保密性增强、成本降低等优点。

01

veriloghdl与vhdl_verilog基本语法

硬件描述语言HDL(Hardware Describe Language) HDL概述 随着EDA技术的发展,使用硬件语言设计PLD/FPGA成为一种趋势。目前最主要的硬件描述语言是 VHDL和Verilog HDL。 VHDL发展的显纾 锓ㄑ细瘢 鳹erilog HDL是在C语言的基础上发展起来的一种硬件描述语言,语法较自由。 VHDL和Verilog HDL两者相比, VHDL的书写规则比Verilog烦琐一些,但verilog自由的语法也容易让少数初学者出错。国外电子专业很多会在本科阶段教授 VHDL,在研究生阶段教授verilog。从国内来看, VHDL的参考书很多,便于查找资料,而Verilog HDL的参考书相对较少,这给学习Verilog HDL带来一些困难。从EDA技术的发展上看,已出现用于CPLD/FPGA设计的硬件C语言编译软件,虽然还不成熟,应用极少,但它有可能会成为继 VHDL和Verilog之后,设计大规模CPLD/FPGA的又一种手段。 选择VHDL还是verilog HDL? 这是一个初学者最常见的问题。其实两种语言的差别并不大,他们的描述能力也是类似的。掌握其中一种语言以后,可以通过短期的学习,较快的学会另一种语言。选择何种语言主要还是看周围人群的使用习惯,这样可以方便日后的学习交流。当然,如果您是集成电路(ASIC)设计人员,则必须首先掌握verilog,因为在IC设计领域,90%以上的公司都是采用verilog进行IC设计。对于PLD/FPGA设计者而言,两种语言可以自由选择。 学习HDL的几点重要提示 1.了解HDL的可综合性问题: HDL有两种用途:系统仿真和硬件实现。如果程序只用于仿真,那么几乎所有的语法和编程方法都可以使用。但如果我们的程序是用于硬件实现(例如:用于FPGA设计),那么我们就必须保证程序“可综合”(程序的功能可以用硬件电路实现)。不可综合的HDL语句在软件综合时将被忽略或者报错。我们应当牢记一点:“所有的HDL描述都可以用于仿真,但不是所有的HDL描述都能用硬件实现。” 2. 用硬件电路设计思想来编写HDL: 学好HDL的关键是充分理解HDL语句和硬件电路的关系。编写HDL,就是在描述一个电路,我们写完一段程序以后,应当对生成的电路有一些大体上的了解,而不能用纯软件的设计思路来编写硬件描述语言。要做到这一点,需要我们多实践,多思考,多总结。 3.语法掌握贵在精,不在多 30%的基本HDL语句就可以完成95%以上的电路设计,很多生僻的语句并不能被所有的综合软件所支持,在程序移植或者更换软件平台时,容易产生兼容性问题,也不利于其他人阅读和修改。建议多用心钻研常用语句,理解这些语句的硬件含义,这比多掌握几个新语法要有用的多。 HDL与原理图输入法的关系 HDL和传统的原理图输入方法的关系就好比是高级语言和汇编语言的关系。HDL的可移植性好,使用方便,但效率不如原理图;原理图输入的可控性好,效率高,比较直观,但设计大规模CPLD/FPGA时显得很烦琐,移植性差。在真正的PLD/FPGA设计中,通常建议采用原理图和HDL结合的方法来设计,适合用原理图的地方就用原理图,适合用HDL的地方就用HDL,并没有强制的规定。在最短的时间内,用自己最熟悉的工具设计出高效,稳定,符合设计要求的电路才是我们的最终目的。 HDL开发流程 用 VHDL/VerilogHD语言开发PLD/FPGA的完整流程为: 1.文本编辑:用任何文本编辑器都可以进行,也可以用专用的HDL编辑环境。通常 VHDL文件保存为.vhd文件,Verilog文件保存为.v文件 2.功能仿真:将文件调入HDL仿真软件进行功能仿真,检查逻辑功能是否正确(也叫前仿真,对简单的设计可以跳过这一步,只在布线完成以后,进行时序仿真) 3.逻辑综合:将源文件调入逻辑综合软件进行综合,即把语言综合成最简的布尔表达式和信号的连接关系。逻辑综合软件会生成.edf(edif)的EDA工业标准文件。 4.布局布线:将.edf文件调入PLD厂家提供的软件中进行布线,即把设计好的逻辑安放到PLD/FPGA内 5.时序仿真:需要利用在布局布线中获得的精确参数,用仿真软件验证电路的时序。(也叫后仿真) 6.编程下载:确认仿真无误后,将文件下载到芯片中 通常以上过程可以都在PLD/FPGA厂家提供的开发工具(如MAXPLUSII,Foundation,ISE)中完成,但许多集成的PLD开发软件只支持 VHDL/Verilog的子集,可能造成少数语法

02
领券