首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    (数据科学学习手札23)决策树分类原理详解&Python与R实现

    作为机器学习中可解释性非常好的一种算法,决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。 一、初识决策树   决策树是一种树形结构,一般的,一棵决策树包含一个根结点,若干个内部结点和若干个叶结点: 叶结点:树的一个方向的最末

    07

    决策树原理及numpy实现版

    (1)若D中所有实例属于同一类 则T为单结点树,并将类 ​作为该结点的类标 记,返回T; (2)若A=Ø,则T为单结点树,并将D中实例数最大的类 作为该结点的类标记, 返回T; (3)否则,计算A中各特征对D的信息增益,选择信息增益最大的特征 Ag ; (4)如果Ag 的信息增益小于阈值ξ ,则置T为单结点树,并将D中实例数最大的类 ​作为该结点的类标记,返回T; (5)否则,对Ag 的每一可能值 ​,依Ag = i​将D分割为若干非空子集 ​,将 中实例 数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T; (6)对第i个子结点,以 ​为训练集,以A-{Ag }为特征集,递归地调用步(1)~步(5),得到子树 返回 。

    04

    R语言从入门到精通:Day16(机器学习)

    在上一次教程中,我们介绍了把观测值凝聚成子组的常见聚类方法。其中包括了常见聚类分析的一般步骤以及层次聚类和划分聚类的常见方法。而机器学习领域中也包含许多可用于分类的方法,如逻辑回归、决策树、随机森林、支持向量机(SVM)等。本次教程的内容则主要介绍决策树、随机森林、支持向量机这三部分内容,它们都属于有监督机器学习领域。有监督机器学习基于一组包含预测变量值和输出变量值的样本单元,将全部数据分为一个训练集和一个验证集,其中训练集用于建立预测模型,验证集用于测试模型的准确性。这个过程中对训练集和验证集的划分尤其重要,因为任何分类技术都会最大化给定数据的预测效果。用训练集建立模型并测试模型会使得模型的有效性被过分夸大,而用单独的验证集来测试基于训练集得到的模型则可使得估计更准确、更切合实际。得到一个有效的预测模型后,就可以预测那些只知道预测变量值的样本单元对应的输出值了。

    01

    针对高分辨率雷达和相机的无标定板的像素级外参自标定方法

    这是今年的一篇针对高分辨率的固态激光雷达(非重复性扫描型)或者多线的激光雷达和相机在无标定板的环境中自动化外参标定的一篇文章。本文的方法不需要基于巧克力板,只依赖两个传感器采集的环境中的线特征就可以得到像素级精度的标定结果。在理论层面,作者分析了边缘特征提供的约束和边缘特征在场景中的分布对标定精度的影响。同时,作者分析了激光雷达的测量原理,并提出了一种基于点云体素分割和平面拟合的高精度的激光雷达点云边缘特征提取的方法。由于边缘特征在自然场景中很丰富,所以作者在室内和室外多个数据集上进行了实验并取得了不错的效果。

    02

    针对高分辨率雷达和相机的无标定板的像素级外参自标定方法

    这是今年的一篇针对高分辨率的固态激光雷达(非重复性扫描型)或者多线的激光雷达和相机在无标定板的环境中自动化外参标定的一篇文章。本文的方法不需要基于巧克力板,只依赖两个传感器采集的环境中的线特征就可以得到像素级精度的标定结果。在理论层面,作者分析了边缘特征提供的约束和边缘特征在场景中的分布对标定精度的影响。同时,作者分析了激光雷达的测量原理,并提出了一种基于点云体素分割和平面拟合的高精度的激光雷达点云边缘特征提取的方法。由于边缘特征在自然场景中很丰富,所以作者在室内和室外多个数据集上进行了实验并取得了不错的效果。

    03

    【数据挖掘项目】Airbnb新用户的民宿预定结果预测

    摘要 本文主要根据对Airbnb 新用户的民宿预定结果进行预测,完整的陈述了从 数据探索到 特征工程到 构建模型的整个过程。 其中: 1数据探索部分主要基于 pandas库,利用常见的: head(), value_counts(), describe(), isnull(), unique()等函数以及通过 matplotlib作图对数据进行理解和探索; 2.特征工程部分主要是通过从日期中提取 年月日, 季节, weekday,对年龄进行 分段,计算相关特征之间的 差值,根据用户id进行分组,从而统计一些特征变量的 次数, 平均值, 标准差等等,以及通过 one hot encoding和 labels encoding对数据进行编码来提取特征; 3.构建模型部分主要基于 sklearn包, xgboost包,通过调用不同的模型进行预测,其中涉及到的模型有,逻辑回归模型 LogisticRegression,树模型: DecisionTree,RandomForest,AdaBoost,Bagging,ExtraTree,GraBoost,SVM模型: SVM-rbf,SVM-poly,SVM-linear, xgboost,以及通过改变 模型的参数和 数据量大小,来观察 NDGG的评分结果,从而了解不同模型,不同参数和不同数据量大小对预测结果的影响.

    02
    领券