学完R语言的基本操作后,我们还可以继续学习R的几大著名而且使用强大的包,今天讲其中的一个,就是ggplot2,至于这个包的评价和地位,我就不多说了,感兴趣可以百度,它绝对是数据可视化的利器,好了,我们先来开始简单介绍一下这个包...2,选择要画图形的类型3,添加一些图形,4,丰富一下图形的信息.ggplot2根据这个步骤,把每一步当做一个图层,每一个图层我们都可以设定一些参数....在画基本图形之前,我先说一下qplot这个函数,这个函数是ggplot2包里面的一个函数,简单作图,他的用法可以看做是基本绘图与ggplot绘图的一个过渡....首先需要加载ggplot2包 library(ggplot2) library(gcookbook) #主要用于获取数据集,若你用自己的数据集便可以不加载 1.画点线图....hist(mtcars$mpg, breaks=10) #修改组数 qplot: qplot(mpg, data=mtcars, binwidth=4) #绘制直方图,其中binwidth用于修改竖块的宽度
在BBC数据团队开发了一个R包,以ggplot2内部风格创建可发布出版物的图形,并且使新手更容易到R创建图形。 例如: ? 加载所有所需的R语言包 通常在R中创建图表需要安装和加载某些软件包。...请注意,对于折线图而言,折线的颜色或对于条形图而言是条形的颜色,并不是从bbc_style()函数中直接获得的,而是需要在其他标准ggplot图表函数中明确设置 。...它本质上修改了ggplot2的主题功能中的某些参数。例如,第一个参数是设置绘图标题元素的字体,大小,字体和颜色。...左对齐/右对齐文本 参数'hjust'和'vjust'指示水平和垂直文本对齐方式。 它们的值可以在0到1之间,其中0左对齐,而1右对齐(或垂直对齐的底部和顶部对齐)。...将左对齐标签添加到条形图 如果您想为条形图添加左对齐标签,只需根据数据设置x参数,而是直接使用数字值指定y参数。y的确切值将取决于数据范围。
R语言可视化—饼图 今天开始进行R语言可视化的练习,主要参照的是文献《Preoperative immune landscape predisposes adverse outcome in hepatocellular...carcinoma patients with liver transplantation》中的配图,尽量复现,顺便以此夯实R语言基础操作。...(或饼图)的堆叠位置中的显示方式。...具体来说: position_stack:这是一个位置调整函数,用于在堆叠的条形图或饼图中调整元素的位置。对于堆叠的条形图,它将标签按照条形的高度依次堆叠。...vjust = 0.5:vjust是垂直对齐参数,取值范围是0到1: vjust = 0 表示标签对齐在每个堆叠部分的底部。 vjust = 1 表示标签对齐在每个堆叠部分的顶部。
比如,在获过奖的 NHS 跟踪项目中,我们使用了 R 来提取、清洗、清理和探索数百份电子表格中的数据,以了解 NHS 目标是否遭受了攻击。...我们还有很多类似的难题需要搞清楚:如何添加 BBC 标识,并且无论你想要导出的图表的纵横比如何,都能有合适的尺寸?如何将图表标题对齐到左上角?就是这类问题。...预选择条形图的颜色以匹配我们的设计调色板好不好? 我们抵住了过于规范的诱惑,提出了适用于创建图表时可能出现的每个潜在问题的普适性解决方案。...我们的想法是,每当数据团队的成员解决一个特定问题时(比如在图中加入一条曲线箭头或突出显示条形图的一条),都能将代码加入到这个「食谱」中,从而节省你和同事下一次的时间。 ?...教会其他人——意料之外的结果 使用 ggplot2 创建生产可用的图表的另一个关键优势原本并不在我们的必需计划中。
在对数据可视化的时候,我们需要明确想要展示的信息,从而选择最为合适的图突出该信息。本系列文章将介绍多种基于不同R包的作图方法,希望能够帮助到各位读者。 什么是直方图/条形图?...ggplot2提供了绘制直方图和条形图的功能,分别为geom_bar()和geom_histogram()。...如何绘制直方图/条形图 1)需要什么格式的数据 本次我们来看一个新的R提供的数据,就是闪闪发光的钻石?Diamonds。 ?...#加载包 library(ggplot2) #作图 ggplot(diamonds, aes(carat)) + geom_histogram() 输入上述命令后我们会得到一条提示stat_bin(...3)如何使用ggplot2做条形图 然后我们来瞧瞧条形图。
加载需要的R包 使用pacman[1]软件包中的p_load函数通过以下代码一次性加载。 #安装pcaman软件包并对其他R包进行加载 if(!...对于折线图而言,折线的颜色或条形图的颜色,并不是从bbc_style()函数中直接实现的,而是需要在其他标准ggplot(ggplot2高效实用指南 (可视化脚本、工具、套路、配色))图表函数中明确设置...这是一个非常简单的折线图的示例,使用了gapminder程序包中的数据。...它实质上修改了ggplot2主题功能(ggplot2学习笔记之图形排列)中的某些参数。 例如,第一个参数是设置图标题元素的字体、大小、和字体颜色。...它能按照BBC图形的标准将标题和副标题左对齐,在绘图的右下角添加页脚,也可以在左下角添加来源。它还可以将图表保存到指定的位置。
二、竖放条形图 1 竖放条形图绘图原理 Python中绘制竖放条形图需用matplotlib.pyplot中的bar函数,该函数的基本语法为: bar(x, height, [width], [...2 绘制竖放条形图 以日期为横坐标,收盘价为纵坐标绘制竖放条形图,具体语句如下: import matplotlib.pyplot as plt #导入库 date = date.set_index...3 优化显示竖放条形图 以时间为横轴,每年收盘价均值为纵轴绘制竖放条形图,并添加标题和轴标签等,具体语句如下: result = date[['收盘价']].groupby(date.index.year...1 横放条形图绘图原理 Python中绘制横向条形图需用matplotlib.pyplot中的barh函数,该函数和bar函数类似,它的基本语法为: barh(y, width, [height]...至此,在Python中绘制条形图已全部讲解完毕,感兴趣的同学可以自己实现一遍
水平方向上标出了每个竖条对应的国家,竖直方向标出了GDP的数值。这样,读者就可以读出每个国家的GDP了。...想象一下,如果让每个学生的身高对应一个竖条,那么图上就会密密麻麻地挤满数千个竖条,很难提供有价值的信息。但如果画成直方图的形式,看起来就会如下图: ? 在这幅图中,横坐标成了身高取值。...每个竖条的宽度对应了一定的身高范围,例如170cm到172cm。竖条的高度,对应了身高在该区间内的学生数。因此,直方图先进行了一次分组的预处理,然后用条形图的办法,画出了每个组中包含的成员总数。...在分组的处理中,一些原始信息丢失,以至于从竖条中没办法读出学生的具体身高。但得到简化的信息变得更容易理解。看了这个图之后,我们可以有信心地说,大部分学生的身高在170cm附近。...说明主要图像元素的含义:“每个竖条对应一定的身高区间。竖条的高度,代表了该身高区间内学生的人数。” 说明次要图像元素的含义:“红线代表了学生的平均身高。”
可以看出,数据集共包含14999条记录,图中显示了前20条。 2.总体情况描述 调用summary()函数观察各个变量的主要描述统计量。 ?...ggplot2包是使用R进行数据可视化的重要工具。...类别(名义型)变量和有序类别(有序型)变量在R中称为因子(factor)。因子在R中非常重要,因为它决定了数据的分析方式以及如何进行视觉呈现。...然后通过堆砌条形图对参与项目数、五年内是否升职、收入水平、是否有工作差错以及岗位与离职的关系进行探索分析。堆砌条形图通过几何函数geom_bar()获得。...4.模型建立 在R中可以通过rpart、rpart.plot包来实现决策树模型及其可视化。
R有几种不同的系统用来产生图形,但ggplot2是最优雅而多变的那一种。ggplot2实现了图形语法,一种描述和构建图形的逻辑系统。通过ggplo2,我们能够快速学习,多处应用。...ggplot2 初探 在ggplot2中,图是采用串联起来(+)号函数创建的。每个函数修改属于自己的部分。...ggplot函数设置图形但没有自己的视觉输出。使用一个或多个几何函数向图中添加了几何对象(简写为geom),包括点、线、条、箱线图和阴影区域。...分组 在R中,组通常用分类变量的水平(因子)来定义。 分组是通过ggplot2图将一个或多个带有诸如颜色、形状、填充、尺寸和线条类型的视觉特征的分组变量来完成的。...不过指导它们的存在是有用的。 修改ggplot2图形的外观 R的基础绘图中,使用par()函数或特定的画图函数的图形参数来自定义基本函数。
ggsci ggsci(ggplot2 scientific)包允许用户在ggplot2的绘图中使用科学期刊的颜色方案,如《Nature》、《Science》等。...使用这些R包,你可以轻松地为你的数据可视化添加专业和吸引人的颜色方案。...以下是使用R语言和ggplot2包绘制一个简单的条形图的示例代码,并测试上面提到的四个R包(RColorBrewer、ggsci、randomcoloR 和 paletteer)的配色功能。...模拟数据进行条形图可视化并且配色 首先,我们需要安装和加载必要的包: install.packages(c("ggplot2", "RColorBrewer", "ggsci", "randomcoloR...这些示例展示了如何轻松地在ggplot2中应用不同的颜色方案来增强数据可视化的视觉效果。
) R语言之可视化①⑦调色板 R语言之可视化①⑧子图组合patchwork包 R语言之可视化①⑨之ggplot2中的图例修改 R语言之可视化(20)之geom_label()和geom_text() R...语言之可视化(21)令人眼前一亮的颜色包 R语言之可视化(22)绘制堆积条形图 R语言之可视化(23)高亮某一元素 R语言之可视化(24)生成带P值得箱线图 R语言之可视化(25)绘制相关图(ggcorr...包) R语言之可视化(26)ggplot2绘制饼图 R语言之可视化(27)通过R语言制作BBC风格的精美图片 R语言之可视化(28)蜜蜂图 R语言之可视化(29)如何更改ggplot2中堆积条形图中的堆积顺序...问题:如何控制由ggplot2创建的堆积条的堆积顺序。...解决方案 堆叠在数据框的原始顺序中 ra.melt$quality <- factor(ra.melt$quality, levels = ra$quality) p <- ggplot(ra.melt
---- R语言绘图系列: R语言可视化及作图1--基础绘图(par函数,散点图,盒形图,条形图,直方图) R语言可视化及作图2--低级绘图函数 R语言可视化及作图3--图形颜色选取 R语言可视化及作图...4--qplot和ggplot2美学函数 R语言可视化及作图5--ggplot2基本要素和几何对象汇总 R语言可视化及作图6--ggplot2之点图、条形图、盒形图、直方图、线图 * 1....,guide_colorbar定义色条图例,guide_legend定义普通图例。...在theme函数中,与图例有关的主要参数有: 参数 用法 功能 legend.background 接受函数element_rect() 定义图例背景 legend.margin 接受数值 定义图例的边缘范围...,0表示左边,1表示右边 定义图例标签对齐方式 legend.title 接受函数element_text() 定义图例标题样式,但是无法定义标题是什么 legend.position 接受字符串:“none
facet_wrap()的第一个参数应该是一个公式,你用〜后跟一个变量名创建(这里“formula”是R中数据结构的名称,而不是“equation”的同义词)。...例如,条形图使用条形图,折线图使用线条图,箱形图使用箱形图格栅等。 散点图打破了这一趋势; 他们使用点geom。 如上所述,您可以使用不同的geom来绘制相同的数据。...左边的图使用点geom,右边的图使用光滑的geom,一条适合数据的平滑线。 要更改绘图中的geom,请更改添加到ggplot()的geom函数。...这里,4代表四轮驱动,f代表前轮驱动,r代表后轮驱动。 如果这听起来很奇怪,我们可以通过在原始数据上叠加线条然后根据drv着色所有内容来使其更清晰。 请注意,此图包含同一图表中的两个geom!...image.png 如果将映射放在geom函数中,ggplot2会将它们视为图层的本地映射。 它将使用这些映射来仅扩展或覆盖该层的全局映射。 这使得可以在不同层中显示不同的aesthetics。
Rsubread 对于 Rsubread,我们必须在 Rsubread 的对齐步骤之前建立我们的索引。...这里我额外指定参数 indexSplit 为 TRUE 并结合 memory 参数设置为 1000 (1000MB) 以控制 Rsubread 对齐步骤中的内存使用。...双端测序数据通常以两个文件的形式出现,通常在文件名中带有 _1 和 _2 或 _R1 和 _R2 来表示一个文件是成对的数字。...最后,我们可以使用 asBam() 函数将输出的 SAM 文件转换为 BAM 文件。 注意NOTE: SAM 和未压缩的FASTQ 文件会占用大量磁盘空间。...library(Rsamtools) mappedReads <- idxstatsBam(sortedBAM) 我们现在可以使用映射的读取数据框来制作跨染色体读取的条形图。
Rsubread对于 Rsubread,我们必须在 Rsubread 的对齐步骤之前建立我们的索引。...这里我额外指定参数 indexSplit 为 TRUE 并结合 memory 参数设置为 1000 (1000MB) 以控制 Rsubread 对齐步骤中的内存使用。...双端测序数据通常以两个文件的形式出现,通常在文件名中带有 _1 和 _2 或 _R1 和 _R2 来表示一个文件是成对的数字。...最后,我们可以使用 asBam() 函数将输出的 SAM 文件转换为 BAM 文件。注意NOTE: SAM 和未压缩的FASTQ 文件会占用大量磁盘空间。...library(Rsamtools)mappedReads 的读取数据框来制作跨染色体读取的条形图。
最好安装最新的R版本和ggplot2版本哦~~ install.packages('gccookbook') library(gcookbook) library(ggplot2) library(dplyr...A:R中的包是一些为了便于分发而封装在一起的函数,数据的集合。安装包就可以扩展R的功能。...R基础包中的绘图函数,但是如果图形更复杂,ggplot2就会成为更好的选择。...这是因为其提供了一个统一的接口和若干选项来代替基础绘图系统中对图的缝缝补补。本章主要帮助我们从基础绘图过度到ggplot2之中。 2.1绘制散点图 Q: 如何绘制散点图?...3 19.0 4 4 16.0 5 5 15.6 6 7 19.8 barplot(BOD$demand,names.arg = BOD$Time) 有时候条形图表示的使分组数据中各个数据的频数
前面介绍了一些ggplot绘图,ggplot2|从0开始绘制直方图,ggplot2|从0开始绘制箱线图,ggplot2|从0开始绘制折线图,这次介绍一下当数据为发散性正负值的时候,几种比较合适的展示方式...mtcars) # 对mpg进行标准化处理 mtcars$mpg_z <- round((mtcars$mpg - mean(mtcars$mpg))/sd(mtcars$mpg), 2) # 按照0未阈值...二 Diverging bars Diverging bars是一种可以同时处理负值和正值的条形图。...注意为了使柱状图创建柱形图而不是直方图,需要确保: (1)设置stat=identity (2)在aes()中同时提供x和y,其中x是字符或因子,y是数值。...五 参考资料 http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html
领取专属 10元无门槛券
手把手带您无忧上云