(medv~poly(rm,2)+crim,data = Boston) # 构建线性模型
summary(lm_fit) # 检查线性模型
Ridge Regreesion and Lasso
# 岭回归与...lasso回归跟其他模型不同,不能直接以公式的形式把数据框直接扔进去,也不支持subset;所以数据整理工作要自己做
library(glmnet)
library(ISLR)
Hitters = na.omit...(Hitters)
x = model.matrix(Salary~., Hitters)[,-1] # 构建回归设计矩阵
y = Hitters$Salary
ridge.mod = glmnet(x...,y,alpha = 0,lambda = 0.1) # 构建岭回归模型
lasso.mod = glmnet(x,y,alpha = 1,lambda = 0.1) # 构建lasso回归模型
Logistic...Regression
library(ISLR)
train = Smarket$Year<2005
logistic.fit = glm(Direction~Lag1+Lag2+Lag3+Lag4+