首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【时空序列预测实战】风险时空预测?keras之ConvLSTM实战来搞定

    官方keras案例 实战过的朋友应该了解,关于Convlstm,可参考的案例非常少,基本上就集中在keras的官方案例(电影帧预测——视频预测 [官方案例] https://keras.io...Sequential from keras.layers.convolutional import Conv3D from keras.layers.convolutional_recurrent import...from keras.models import Sequential from keras.layers.convolutional import Conv3D ,Conv2D from keras.layers.convolutional_recurrent...import ConvLSTM2D from keras.layers.normalization import BatchNormalization from keras_contrib.losses...3.预测图片出现模糊大概有以下几个原因: (1)网络结构不够优(继续调就完事了),往往这种情况下,得到的预测点也不会太准确。

    2.9K30

    使用LSTM模型预测股价基于Keras

    本文将通过构建用Python编写的深度学习模型来预测未来股价走势。 虽然预测股票的实际价格非常难,但我们可以建立模型来预测股票价格是上涨还是下跌。...介绍 LSTM在解决序列预测的问题时非常强大,因为它们能够存储之前的信息。而之前的股价对于预测股价未来走势时很重要。...的一些模型来构建LSTM 1、顺序初始化神经网络 2、添加一个紧密连接的神经网络层 3、添加长短时记忆层(LSTM) 4、添加dropout层防止过拟合 from keras.models import...Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout...结论 预测股价的方法还有很多,比如移动平均线、线性回归、k近邻、ARIMA和Prophet。读者可以自行测试这些方法的准确率,并与Keras LSTM的测试结果进行比较。

    4.3K20

    Keras 实现 LSTM时间序列预测

    本文将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测。 1 项目简单介绍 1.1 背景介绍 本项目的目标是建立内部与外部特征结合的多时序协同预测系统。...课题通过进行数据探索,特征工程,传统时序模型探索,机器学习模型探索,深度学习模型探索(RNN,LSTM等),算法结合,结果分析等步骤来学习时序预测问题的分析方法与实战流程。...,其他与预测一样。...时间跨度为2016年9月1日 - 2016年11月30日 训练与预测都各自包含46组数据,每组数据代表不同数据源,组之间的温度与湿度信息一样而输出不同. 2 导入库并读取查看数据 ? ? ? ?...5 模型预测并可视化 ? ? 蓝色曲线为真实输出 绿色曲线为训练数据的预测输出 黄色曲线为验证数据集的预测输出 红色曲线为测试数据的预测输出(能看出来模型预测效果还是比较好的)

    2.5K12

    回顾——keras电影评价预测

    学习一时爽,一直学习一直爽 回顾以前的笔记 (于3月份记录的) 在keras中,内置了imdb电影评分数据集,来进行评价预测 安装keras conda install keras conda就帮依赖全部搞定...,记得加源 导入imdb from keras.datasets import imdb 数据集简要说明 一个长长的英文句子,有的有几千单词,有的有几十,分类成好的评价和不好的评价 在数据中不是单词,...而是单词的索引 一共就5万句子 import keras from keras import layers import matplotlib.pyplot as plt %matplotlib inline...data = keras.datasets.imdb max_word = 10000 # 加载前10000个单词 最大不超过10000 (x_train, y_train), (x_test, y_test...模型的训练 补充模型 input_dim 就是x_trian 的数量10000 relu激活 二分类sigmoid 优化adam 损失函数二分类binary_crossentropy model = keras.Sequential

    71430

    用keras对国产剧评论文本的情感进行预测

    RNN即循环神经网络,其主要用途是处理和预测序列数据。在CNN中,神经网络层间采用全连接的方式连接,但层内节点之间却无连接。...RNN为了处理序列数据,层内节点的输出还会重新输入本层,以实现学习历史,预测未来。...Keras对RNN的支持 Keras在layers包的recurrent模块中实现了RNN相关层模型的支持,并在wrapper模块中实现双向RNN的包装器。...下面的示例使用了LSTM模型,通过对豆瓣电视剧评论进行训练,最终使得模型可以对评论的好恶进行预测,或者说简单的情感分析。 语料处理 原始语料来自豆瓣,采集了约100w条豆瓣国产剧评论及对应的评分。...import Sequential from keras.preprocessing.text import Tokenizer import keras.preprocessing.sequence

    1.3K50

    教你用 Keras 预测房价!(附代码)

    我发现自定义损失函数在建立需要为不同数量级的数据创建预测的回归模型时非常有用。例如,在一个价值可以显著变化的地区预测房价。...为了说明实践中是如何工作的,我们将使用由 Keras 提供的波士顿房屋数据集: 数据集-Keras 文件 数据集来自 IMDB 的 25000 条电影评论,用标签(正面或负面)对其进行标记。...我们现在有一个可以从使用自定义损失函数中获益的预测问题。生成这些图的 R 代码如下所示。 ? Keras 中的损失函数 Keras中包含许多用于训练深度学习模型的有用损失函数。...这可以通过 Keras 包和 install_keras 函数完成。 ? 安装完成后,我们将加载数据集并应用我们的转换来改变住房价格。最后两项操作可以注释掉,使用原来的房价。 ?...接下来,我们将创建一个 Keras 模型来预测房价。我使用了「Deep Learning with R」中示例的网络结构。该网络包括两层全连接层及其激励函数 relu,以及一个没有变换的输出层。 ?

    2.1K20

    教你预测北京雾霾,基于keras LSTMs的多变量时间序列预测

    这在时间预测问题中非常有用,而经典线性方法难以应对多变量预测问题。 本文讲解了如何在Keras深度学习库中,为多变量时间序列预测开发LSTM模型。...包含三块内容: 如何将原始数据集转换为可用于时间序列预测的数据集; 如何准备数据,并使LSTM模型适用于多变量时间序列预测问题; 如何做预测,并将预测的结果重新调整为原始数据单位。...且需安装scikit-learn、Numpy、Pandas、Matplotlib、 Scipy、Keras(2.0或更高版本)、TensorFlow或Theano backend等依赖包。...from sklearn.metrics import mean_squared_error from keras.models import Sequential from keras.layers...from numpy import concatenate from keras.layers import LSTM from math import sqrt # 开始预测 yhat = model.predict

    1.3K31

    深度学习实战:kaggle竞赛:Keras实现双层LSTM进行风暴预测 python+Keras源码

    本文使用Keras实现双层LSTM进行风暴预测,是一个二分类任务。 模型构建思路 为什么使用 LSTM? LSTM(长短期记忆网络)是一种特殊的 RNN(循环神经网络),它能够有效地处理长期依赖问题。...优点 适用于序列数据:LSTM 结构能够处理并理解时间序列数据中的长期依赖关系,适用于许多任务,如自然语言处理、股票预测、天气预测等。...import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.optimizers...import Sequential from keras.layers import LSTM, Dense from sklearn.metrics import accuracy_score import...3小时预测模型虽表现良好,但其AUC下降反映出对更长时间预测的适应能力有限。 本次分享到这里就结束了,数据集大家可以自行下载尝试,感谢观看

    36210

    教程 | 基于Keras的LSTM多变量时间序列预测

    本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。 诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。...这为时间序列预测带来极大益处,因为经典线性方法难以适应多变量或多输入预测问题。 通过本教程,你将学会如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。...你还需要使用 TensorFlow 或 Theano 后端安装 Keras(2.0 或更高版本)。...请记住,每个批结束时,Keras 中的 LSTM 的内部状态都将重置,因此内部状态是天数的函数可能有所帮助(试着证明它)。...原文链接:https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/ 本文为机器之心编译,转载请联系本公众号获得授权

    4.1K80

    Keras中带LSTM的多变量时间序列预测

    这在时间序列预测中是一个很大的好处,经典的线性方法很难适应多元或多输入预测问题。 在本教程中,您将了解如何在Keras深度学习库中开发用于多变量时间序列预测的LSTM模型。...请记住,Keras中的LSTM的内部状态在每个批次结束时被重置,所以是多天函数的内部状态可能是有用的(尝试测试)。...import Sequential from keras.layers import Dense from keras.layers import LSTM # 转换序列成监督学习问题 def series_to_supervised...import Sequential from keras.layers import Dense from keras.layers import LSTM # 将序列转换为监督学习问题 def...北京PM2.5数据集在UCI机器学习库 Keras中长期短期记忆模型的5步生命周期 Python中的长时间短时记忆网络的时间序列预测 Python中的长期短期记忆网络的多步时间序列预测 概要 在本教程中

    46.8K149

    基于深度学习的图像目标识别预测 | CV | Tensorflow | Keras

    在人工智能研究的大潮中,如何模拟人类对于静态或动态目标的有效识别预测一直是研究热点,通过智能技术实现对于目标特征的学习并对特定目标进行快速识别,预测得出目标识别概率,实现基于深度学习模型在复杂背景...~/.keras/keras.json 。...全连接层 这个层在 Keras 中称为被称之为 Dense 层,只需要设置输出层的维度,然后Keras就会帮助自动完成了。...import keras from keras.models import Sequential from keras.layers import Dense import numpy as np trX...为了去构建这个网络,将利用Keras API的功能来构建一个单独的 fire 模块,当构建完模型后即可对一幅图识别概率预测。

    1.6K20

    预测金融时间序列——Keras 中的 MLP 模型

    “预测”的问题必须首先更接近机器学习的问题来描述。 我们可以简单地预测市场中股票价格的变动——或多或少——这将是一个二元分类问题。...另一方面,我们可以仅预测第二天(或几天后)的价格值或与前一天相比第二天的价格变化,或这种差异的对数——即,我们要预测一个数字,这是一个问题回归。...让我们把Keras作为一个实现框架——它非常简单、直观,你可以用它来实现相当复杂的计算图,但到目前为止我们还不需要它。...Keras 还允许我们非常灵活地控制训练过程,例如,如果我们的结果没有改善,最好减少梯度下降步骤的值——这正是 Reduce LR On Plateau 所做的,我们将其添加为回调到模型训练。...我们将从最常见的方式开始——在权重总和的L2 范数中向误差函数添加一个附加项,在Keras 中, 这是使用 keras.regularizers.activity_regularizer 完成的。

    5.6K51
    领券