1 页式管理 1.1 分段机制存在的问题 分段,是指将程序所需要的内存空间大小的虚拟空间,通过映射机制映射到某个物理地址空间(映射的操作由硬件完成)。...分页机制解决了上面分段方法所存在的一个内存使用效率问题;其核心思想是系统为程序执行文件中的第x页分配了内存中的第y页,同时y页会添加到进程虚拟空间地址的映射表中(页表),这样程序就可以通过映射访问到内存页...其中的一个关键任务就是把所请求的访问类型与线性地址的访问权限相比较,如果这次内存访问是无效的,就产生一个缺页异常。 页 : 为了更高效和更经济的管理内存,线性地址被分为以固定长度为单位的组,成为页。...但是Linux并没有采用这种机制 正如前面所述,通过设置页目录项的Page Size标志启用扩展分页功能。在这种情况下,分页单元把32位线性地址分成两个字段: Directory:最高10位。...第0位是存在位,如果P=1,表示页表地址指向的该页在内存中,如果P=0,表示不在内存中。 第1位是读/写位,第2位是用户/管理员位,这两位为页目录项提供硬件保护。
1 linux的分页机制 1.1 四级分页机制 前面我们提到Linux内核仅使用了较少的分段机制,但是却对分页机制的依赖性很强,其使用一种适合32位和64位结构的通用分页模型,该模型使用四级分页机制,即...1.2 不同架构的分页机制 对于不同的体系结构,Linux采用的四级页表目录的大小有所不同:对于i386而言,仅采用二级页表,即页上层目录和页中层目录长度为0;对于启用PAE的i386,采用了三级页表...1.3 为什么linux热衷:分页>分段 那么,为什么Linux是如此地热衷使用分页技术而对分段机制表现得那么地冷淡呢,因为Linux的进程处理很大程度上依赖于分页。...这就允许存放在某个页框中的一个页,然后保存到磁盘上,以后重新装入这同一页时又被装在不同的页框中。这就是虚拟内存机制的基本要素。 每一个进程有它自己的页全局目录和自己的页表集。...3.2 Linux中通过4级页表访问物理内存 linux中每个进程有它自己的PGD( Page Global Directory),它是一个物理页,并包含一个pgd_t数组。
1 分页机制 在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address)....中的分页 层次话的页表用于支持对大地址空间快速, 高效的管理....目前的内核的内存管理总是假定使用四级页表, 而不管底层处理器是否如此....其他内容请参照博主的另外两篇博客, 我就不罗嗦了 深入理解计算机系统-之-内存寻址(五)–页式存储管理, 详细讲解了传统的页式存储管理机制 深入理解计算机系统-之-内存寻址(六)–linux中的分页机制..., 详细的讲解了Linux内核分页机制的实现机制 3 Linux分页机制的演变 3.1 Linux的页表实现 由于程序存在局部化特征, 这意味着在特定的时间内只有部分内存会被频繁访问,具体点,进程空间中的
内存是计算机的主存储器。内存为进程开辟出进程空间,让进程在其中保存数据。我将从内存的物理特性出发,深入到内存管理的细节,特别是了解虚拟内存和内存分页的概念。 内存 简单地说,内存就是一个数据货架。...因此,Linux采用了分页(paging)的方式来记录对应关系。所谓的分页,就是以更大尺寸的单位页(page)来管理内存。在Linux中,通常每页大小为4KB。...操作系统把对应关系记录在分页表(page table)中。这种对应关系让上层的抽象内存和下层的物理内存分离,从而让Linux能灵活地进行内存管理。...这意味着,如果使用连续分页表,很多条目都没有真正用到。因此,Linux中的分页表,采用了多层的数据结构。多层的分页表能够减少所需的空间。 我们来看一个简化的分页设计,用以说明Linux的多层分页表。...最新Linux系统中的分页表多达3层,管理的内存地址也比本章介绍的长很多。不过,多层分页表的基本原理都是相同。 综上,我们了解了内存以页为单位的管理方式。
内存是计算机的主存储器。内存为进程开辟出进程空间,让进程在其中保存数据。我将从内存的物理特性出发,深入到内存管理的细节,特别是了解虚拟内存和内存分页的概念。 内存 简单地说,内存就是一个数据货架。...因此,Linux采用了分页(paging)的方式来记录对应关系。所谓的分页,就是以更大尺寸的单位页(page)来管理内存。在Linux中,通常每页大小为4KB。...这种对应关系让上层的抽象内存和下层的物理内存分离,从而让Linux能灵活地进行内存管理。由于每个进程会有一套虚拟内存地址,那么每个进程都会有一个分页表。为了保证查询速度,分页表也会保存在内存中。...这意味着,如果使用连续分页表,很多条目都没有真正用到。因此,Linux中的分页表,采用了多层的数据结构。多层的分页表能够减少所需的空间。 我们来看一个简化的分页设计,用以说明Linux的多层分页表。...最新Linux系统中的分页表多达3层,管理的内存地址也比本章介绍的长很多。不过,多层分页表的基本原理都是相同。 综上,我们了解了内存以页为单位的管理方式。
我将从内存的物理特性出发,深入到内存管理的细节,特别是了解虚拟内存和内存分页的概念。 内存 简单地说,内存就是一个数据货架。内存有一个最小的存储单位,大多数都是一个字节。...因此,Linux采用了分页(paging)的方式来记录对应关系。所谓的分页,就是以更大尺寸的单位页(page)来管理内存。在Linux中,通常每页大小为4KB。...这种对应关系让上层的抽象内存和下层的物理内存分离,从而让Linux能灵活地进行内存管理。由于每个进程会有一套虚拟内存地址,那么每个进程都会有一个分页表。为了保证查询速度,分页表也会保存在内存中。...这意味着,如果使用连续分页表,很多条目都没有真正用到。因此,Linux中的分页表,采用了多层的数据结构。多层的分页表能够减少所需的空间。 我们来看一个简化的分页设计,用以说明Linux的多层分页表。...最新Linux系统中的分页表多达3层,管理的内存地址也比本章介绍的长很多。不过,多层分页表的基本原理都是相同。 综上,我们了解了内存以页为单位的管理方式。
1 今日内容(分页机制初始化) 在初始化内存的结点和内存区域之前, 内核先通过pagging_init初始化了内核的分页机制....在分页机制完成后, 才会开始初始化系统的内存数据结构(包括内存节点数据和内存区域), 并在随后初始化buddy伙伴系统来接管内存管理的工作 2 分页机制初始化 arm64架构下, 内核在start_kernel...()->setup_arch()中通过arm64_memblock_init( )完成了memblock的初始化之后, 接着通过setup_arch()->paging_init()开始初始化分页机制...这对管理普通应用程序和内核访问内存的方式,有深远的影响 2.1 虚拟地址空间(以x86_32位系统为例) 因此在仔细考察其实现之前,很重要的一点是解释该函数的目的 在x86_32系统上内核通常将总的4GB...字符串面值, 只读变量 2.2 paging_init初始化分页机制 paging_init函数定义在arch/arm64/mm/mmu.c?
linux内存管理卷帙浩繁,本文只能层层递进地带你领略冰山轮廓,通过本文你将了解到以下内容: 为什么需要管理内存 linux段页管理机制 内存碎片的产生机理 为什么需要管理内存 老子的著名观点是无为而治...段页管理机制 本文并不深入地将分段管理内存和分页管理内存,因为将这些细节的优秀文章很多,感兴趣的使用搜索引擎一键即达。...段页机制也不是一蹴而就的,经历了单纯物理分段、单纯分页、单纯逻辑分段等阶段,最终演进出来了分段和分页结合的内存管理方式,段页结合获得了分段和分页的优势也避免了单一模式的弊端,是一种比较好的管理模式。...本文对于段页管理机制只想通俗地说明一些概念,段页管理机制是分段式管理和分页式管理的组合,段式管理是逻辑上的管理方式,分页管理是偏物理上的管理方式。...linux的内存管理采取的是分页存取机制,为了保证物理内存能得到充分的利用,内核会在适当的时候将物理内存中不经常使用的数据块自动交换到虚拟内存中,而将经常使用的信息保留到物理内存。
我将从内存的物理特性出发,深入到内存管理的细节,特别是了解虚拟内存和内存分页的概念。 ▉内存 简单地说,内存就是一个数据货架。内存有一个最小的存储单位,大多数都是一个字节。...因此,Linux采用了分页(paging)的方式来记录对应关系。所谓的分页,就是以更大尺寸的单位页(page)来管理内存。在Linux中,通常每页大小为4KB。...这种对应关系让上层的抽象内存和下层的物理内存分离,从而让Linux能灵活地进行内存管理。由于每个进程会有一套虚拟内存地址,那么每个进程都会有一个分页表。为了保证查询速度,分页表也会保存在内存中。...这意味着,如果使用连续分页表,很多条目都没有真正用到。因此,Linux中的分页表,采用了多层的数据结构。多层的分页表能够减少所需的空间。 我们来看一个简化的分页设计,用以说明Linux的多层分页表。...最新Linux系统中的分页表多达3层,管理的内存地址也比本章介绍的长很多。不过,多层分页表的基本原理都是相同。
参考资料 《深入分析Linux内核源码》 在上一篇文章Linux内存寻址之分段机制中,我们了解逻辑地址通过分段机制转换为线性地址的过程。下面,我们就来看看更加重要和复杂的分页机制。...分页机制管理的对象是固定大小的存储块,称之为页(page)。...分页机制通过把线性地址空间中的页,重新定位到物理地址空间来进行管理,因为每个页面的整个4K字节作为一个单位进行映射,并且每个页面都对齐4K字节的边界,因此,线性地址的低12位经过分页机制直接地作为物理地址的低...第0位是存在位,如果P=1,表示页表地址指向的该页在内存中,如果P=0,表示不在内存中。 第1位是读/写位,第2位是用户/管理员位,这两位为页目录项提供硬件保护。...Linux中的分页机制 Linux使用了一个适合32位和64位系统的分页机制。 ?
我将从内存的物理特性出发,深入到内存管理的细节,特别是了解虚拟内存和内存分页的概念。 ▍内存 简单地说,内存就是一个数据货架。内存有一个最小的存储单位,大多数都是一个字节。...因此,Linux采用了分页(paging)的方式来记录对应关系。所谓的分页,就是以更大尺寸的单位页(page)来管理内存。在Linux中,通常每页大小为4KB。...这种对应关系让上层的抽象内存和下层的物理内存分离,从而让Linux能灵活地进行内存管理。由于每个进程会有一套虚拟内存地址,那么每个进程都会有一个分页表。为了保证查询速度,分页表也会保存在内存中。...这意味着,如果使用连续分页表,很多条目都没有真正用到。因此,Linux中的分页表,采用了多层的数据结构。多层的分页表能够减少所需的空间。 我们来看一个简化的分页设计,用以说明Linux的多层分页表。...最新Linux系统中的分页表多达3层,管理的内存地址也比本章介绍的长很多。不过,多层分页表的基本原理都是相同。 综上,我们了解了内存以页为单位的管理方式。
32位操作系统为4G,其中1G内核页面,3G用户页面 (32位CPU寄存器地址) 操作系统保护模式下的,启用分页机制的地址即虚拟地址,实模式下,虚拟地址和逻辑地址相同...物理内存划分:帧(Frame) 逻辑内存划分:页(Page) 地址总线:intel早期CPU20位(内存1M);286的地址总线24位(内存64M);386的地址总线32位...(内存4G) 总线:地址总线、数据总线、控制总线 2.页表的软硬件实现 页表:段寄存与页码对应表,如下page table ?...实现方式:硬件使用TLB(Translation look-aside buffer翻译后备缓冲区)+内存存储 ? 3.段表硬件结构 段表:基地址+界限寄存器(限制偏移量大小) ?...段选择符:TI=0使用GDT,TI=1使用LDT 6.页表数据结构(如:段描述符和段选择符) a.层次划分页(Hierarchical Paging) ?
这样,进程可以以一种透明的方式访问内存,无需关心内存的实际物理位置。通过虚拟内存机制,操作系统能够更好地管理系统内存资源,提供更高的安全性和稳定性。...内存分页内存分页是将整个虚拟和物理内存空间划分为固定大小的连续内存块,称为页(Page)。在Linux下,每一页的大小通常为4KB。...这是因为程序执行过程中,访问的页表项相对固定。通过利用TLB,可以大大提高地址转换的速度,加快程序的执行效率。Linux内存管理Linux内存管理涉及逻辑地址和线性地址的转换。...逻辑地址是程序使用的地址,而线性地址是通过段式内存管理映射的地址,也称为虚拟地址。Linux的虚拟地址空间分为内核空间和用户空间两部分。...虚拟内存的实现方式有分段和分页,其中分页机制更为常用,采用多级页表的方式节约了内存空间。页表缓存TLB能够加快虚拟地址到物理地址的转换速度。
Android对内存的使用方式同样是“尽最大限度的使用”,这一点继承了Linux的优点。...Linux系统在进程活动停止后就结束该进程,而Android系统则会在内存中尽量长时间的保持应用进程,直到系统需要更多内存为止 。...Android中的进程管理 说到Android的内存管理,就不得不提到进程管理,因为进程管理确确切切的影响着系统内存。在了解进程管理之前,我们首先了解一些基础概念。...只有在内存不足以支持它们同时继续运行这一万不得已的情况下,系统才会终止它们。此时,设备往往已达到内存分页状态,因此需要终止一些前台进程来确保用户界面正常响应。...内存管理中对于前台/后台应用的定义,与用于Service限制目的的后台应用定义不同。
Android使用虚拟内存和分页,不支持交换 垃圾收集 无论是ART还是Dalvik虚拟机,都和众多Java虚拟机一样,属于一种托管内存环境(程序员不需要显示的管理内存的分配与回收,交由系统自动管理...托管内存环境会跟踪每个内存分配, 一旦确定程序不再使用一块内存,它就会将其释放回堆中,而无需程序员的任何干预。回收托管内存环境中未使用内存的机制称为垃圾回收。...分配和回收应用的内存 Android为每个进程分配内存的时候,采用了弹性分配方式,也就是刚开始并不会一下分配很多内存给每个进程,而是给每一个进程分配一个“够用”的虚拟内存范围。...这个范围是根据每一个设备实际的物理内存大小来决定的,并且可以随着应用后续需求而增加,但最多也只能达到系统为每个应用定义的上限。 堆的逻辑大小与其使用的物理内存总量并不完全相同。...系统还会考虑哪些进程占用更多内存,因为在它被杀时会为系统提供更多内存增益。因此在整个LRU列表中消耗的内存越少,保留在列表中并且能够快速恢复的机会就越大。
一、JVM的内存区域 对于C、C++程序员来说,在内存管理领域,他们既拥有每一个对象的“所有权”,又担负着每一个对象生命开始到终结的维护责任。...对Java程序员来说,在虚拟机的自动内存管理机制的帮助下,不再需要为每个new操作去写匹对的 delete/free 代码,不容易出现内存泄露和内存溢出的问题。...1、内存区域 根据《Java虚拟机规范(Java SE 7版)》规定,Java虚拟机所管理的内存将包括以下几个运行时数据区域,如图: ?...分配的内存等,这些内存直接受操作系统管理。...但 JVM 不直接管理这些堆外内存,存在 OOM 的风险,可以在 JVM 启动参数加上 -XX:MaxDirectMemorySize,对申请的堆外内存大小进行限制 DirectByteBuffer 对象表示堆外内存
OC中每个对象都有一个与之对应的整数,叫“引用计数器”,当一个对象在创建之后它的引用计数器值加1,当调用这个对象的alloc、retain、new、copy方法之后引用计数器值自动在原来的基础上加1,当调用这个对象的...release方法之后它的引用计数器值减1,如果一个对象的引用计数器值为0,则系统会自动调用这个对象的dealloc方法来销毁这个对象。...内存管理原则: 1.使用new、alloc、copy方法创建一个对象时,该对象的保留计数器值为1。当不再使用该对象时,应该向该对象发送一条release或autorelease消息。...这样该对象在其使用寿命结束时被销毁; 2.当你获得一个对象时,假设该对象的保留计数器值为1,而且已经被设置为自动释放,那么你不需要执行任何操作来确保该对象得到清理。...必须保持retain方法和release方法的使用次数相等。 注:对象之间可能交叉引用,此时需要遵循一个法则:谁创建,谁释放。
任何编程语言都会有一个内存模型,以便管理为变量分配的内存空间。...不同的编程语言,如C、C++、Java、C#,Python,它们的内存模型都是不相同的,本文将以现在最流行的Python语言为例,来说明动态类型语言的内存管理方式。 1....引用计数器 在Python语言中是无法自己释放变量内存的,所以Python虚拟机提供了自动回收内存的机制,那么Python虚拟机是如何知道哪一个变量占用的内存可以被回收呢?...因为不管你的计算机有多少内存,只要不断创建新的变量,哪怕该变量只占用了1个字节的内存空间,内存也有用完的一天。所以虚拟机会在适当的时候释放掉不需要的内存块。 ?...分代策略(解决了GC的效率问题) 通过这些策略的共同作用,可以让Python更加有效地管理内存,更进一步地提高Python的性能。
领取专属 10元无门槛券
手把手带您无忧上云