保护操作系统中的敏感数据对于确保计算机的安全至关重要。在 Linux 系统中,你可以使用加密技术来保护根文件系统中的数据。加密根文件系统可以防止未经授权的访问和数据泄露。本文将介绍如何在 Linux 上加密根文件系统,并提供详细的步骤。
根文件系统首先是一种文件系统,但是相对于普通的文件系统,它的特殊之处在于,它是内核启动时所mount的第一个文件系统,内核代码映像文件保存在根文件系统中,而系统引导启动程序会在根文件系统挂载之后从中把一些基本的初始化脚本和服务等加载到内存中去运行。
摘要:能不能在ARM板上运行Ubuntu呢?答案肯定是可以的,Ubuntu是Linux系统的一种,可以简单的将Ubuntu理解为一个根文件系统,和我们用busybox、buildroot制作的根文件系统一样。因此移植Ubuntu也就是将Ubuntu根文件系统移植到我们的开发板上。
文件系统是os用来明确存储设备(常见的是磁盘,也有基于NAND Flash的固态硬盘)或分区上的文件的方法和数据结构;即在存储设备上组织文件的方法。操作系统中负责管理和存储文件信息的软件机构称为文件管理系统,简称文件系统。 文件系统由三部分组成:文件系统的接口,对对象操作和管理的软件集合,对象及属性。从系统角度来看,文件系统是对文件存储设备的空间进行组织和分配,负责文件存储并对存入的文件进行保护和检索的系统。具体地说,它负责为用户建立文件,存入、读出、修改、转储文件,控制文件的存取,当用户不再使用时撤销文件等。
如果大家做过linux系统移植、或者Linux相关开发,对根文件系统这个名词应该很熟悉,在搭建嵌入式开发环境过程中,移植bootloader,移植kernel制作根文件系统是必须要做3件事情。
linux中有一个让很多初学者都不是特别清楚的概念,叫做“根文件系统”。我接触linux前前后后也好几年了,但是对这个问题,至今也不是特别的清楚,至少没法给出一个很全面很到位的解释。于是,今天我们就来理一理这个话题。
前面几篇介绍了uboot的移植与内核的移植,本篇进行根文件系统的构建,这是Linux移植三大组成部分的最后一步,根文件系统构建好后,就构成了一个基础的、可以运行的嵌入式Linux最小系统。
嵌入式系统三大部分:bootloader(uboot)、Linux内核、根文件系统。
建立交叉开发环境 配置开发主机 移植bootloader linux内核移植 建立并烧写根文件系统到目标板 开发嵌入式应用程序 部署与配置系统 (1)建立交叉开发环境 开发主机的操作系统一般选用某一个发行版本号的linux系统,如RedHatlinux等。linux内核版本号能够依据项目的详细需求而定,如2.4内核或者2.6内核。选择定制安装或所有安装,通过网络下载对应的gcc交叉编译器进行安装(比方arm-linux-gcc,arm-uclibc-gcc等),或者安装产品厂家提供的交叉编译器。 (2)配置开发主机 配置开发主机包含在开发主机上安装linux系统,配置交叉连接工具,如串口和网络接口。 (3)建立引导装载程序bootloader 从网络上下载一些公开源码的bootloader,依据自己详细芯片进行移植改动。
/proc –proc文件系统是内核与用户的接口,将内核的一些信息反映到此目录下
分别是: 1、Makefile:分布在 Linux 内核源代码根目录及各层目录中,定义 Linux 内核的编译规则; 2、配置文件(config.in):给用户提供配置选择的功能; 3、配置工具:包括配置命令解释器(对配置脚本中使用的配置命令进行解释)和配置用户界面(提供基于字符界面、基于 Ncurses 图形界面以及基于 Xwindows 图形界面的用户配置界面,各自对应于 Make config、Make menuconfig 和 make xconfig)。
对于linux系统的初学者来说,理解并掌握linux系统启动流程能够使你够深入的理解linux系统,还可以通过系统的启动过程来分析问题解决问题。 Linux系统的启动流程 ---- 关于linux系统的启动流程可以分为以下步骤: POST(加电自检)–>加载BIOS(Basic Input/Outpu System)–>确定启动设备(Boot sequence)、加载Boot Loader–>加载内核(kernel)初始化initrd–>运行/sbin/init初始化系统–>打印用户登录
这篇文章简单我们来一起梳理嵌入式Linux的一些知识,方便于一些想跟我一样想要由单片机进阶到嵌入式Linux的朋友做一些参考学习。
请先按照调试工具安装、Linux开发环境搭建相关文档,安装SecureCRT串口调试终端、VMware虚拟机等相关软件,按照Linux系统使用手册解压安装LinuxSDK开发包到Ubuntu。无特殊说明情况下,默认使用USB TO UART0作为调试串口,使用Linux系统启动卡(Micro SD方式)启动系统,通过路由器与PC机进行网络连接。
linux作为一款流行的嵌入式系统,目前已经有多种架构的MCU支持Linux移植,arm64就是其中一种。今天在这里想做一个笔记,记录一下完整的arm64移植过程。
上篇文章介绍了根文件系统的制作与NFS网络挂载,这篇文章介绍内核如何从本地挂载根文件系统,完成系统启动。本地挂载一般用在产品发布的时候,本地挂载的操作也分为两种。
之前系列的文章介绍了如何编译Uboot、Kernel以及使用默认的ramdisk根文件系统来构建一个完整的嵌入式Linux系统,本篇文章介绍如何从头制作一个放在NAND Flash上的根文件系统。经过我这段时间的总结,rootfs相关的编译、配置等工作还是比较麻烦的。所以你可能会看到一般做核心板的第三方厂家会建议初学者直接使用现成提供的文件系统,比如一个做NUC972核心板的厂家,其文档里这么描述:
NXP 会从linux内核官网下载某个版本,然后将其移植到自己的 CPU上,测试成功后就会将其开放给NXP的CPU开发者。开发者下载 NXP 提供的 Linux 内核,然后将其移植到自己的产品上。
在上一篇文章鸿蒙系统研究之三:迈出平台移植第一步,我们将内核加载并启动,但缺少根文件系统。这篇文章我们来探讨一下根文件系统的制作。
在制作Initramfs文件系统之前,我先简单介绍下linux各文件系统。linux支持多种文件系统类型,包括ext2,ext3,vfat,jffs,
① 电脑一开机,那些界面是谁显示的? 是 BIOS,它做什么?一些自检,然后从硬盘上读入 windows,并启动它。 类似的,这个 BIOS 对应于嵌入式 Linux 里的 bootloader。 Bootloader 的作用就是去 Flash、SD 卡等设备上读入 Linux 内核,并启动它。
大多数用户发现使用标准流程升级从一个Fedora版本升级到下一个很简单。但是,Fedora升级也不可避免地会遇到许多特殊情况。本文介绍了使用DNF和逻辑卷管理(LVM)进行升级的一种方法,以便在出现问题时保留可引导备份。这个例子是将Fedora26系统升级到Fedora28。
一套linux体系,只有内核本身是不能工作的,必须要 rootfs 上的 etc 目录下的配置文件、/bin /sbin 等目录下的 shell 命令,还有 /lib 目录下的库文件等···)相配合才能工作 。
一、Linux内核的组成 相关概念: Linux系统的组成部分:内核+根文件系统 内核:进程管理、内存管理、网络协议栈、文件系统、驱动程序。 IPC(Inter-Process Communication进程间通信):就是指多个进程之间相互通信,交换信息的方法。Linux IPC基本上都是从Unix平台上继承而来的。主要包括最初的Unix IPC,System V IPC以及基于Socket的IPC。另外,Linux也支持POSIX IPC。 运行中的系统环境可分为两层:内核空间、用户空间
跟我一起来到故事开始的地方,深入 Linux 系统的启动流程,自己编译内核并制作根文件系统,并使用 QEMU 模拟启动。
加电自检(power-on-self-test)用来检查各硬件是否正常工作,如 cpu、内存、显卡、硬盘、键盘等。加电自检的过程是通过主板上的 ROM 芯片(CMOS)所定义的程序来实现的,CMOS 可以做一些设定,是通过基本输入输出系统(BIOS)实现的,如选择计算机由哪块设备进行引导。
1.1在嵌入式系统中的根文件系统与桌面版的根文件系统文件基本上类似,所以用Ubuntu中根文件系统问模板,进行分析:
类似于Windows下的C、D、E等各个盘,Linux系统也可以将磁盘、Flash等存储设备划分为若干个分区,在不同分区存放不同类别的文件。与Windows的C盘类似,Linux一样要在一个分区上存放系统启动所必需的文件,比如内核映象文件(在嵌入式系统中,内核一般单独存放在一个分区中)、内核启动后运行的第一个程序(init)、给用户提供操作界面的shell程序、应用程序所依赖的库等。这些必需的、基本的文件,合称为根文件系统,它们存放在一个分区中。Linux系统启动后首先挂接这个分区──称为挂接(mount)根文件系统。其他分区上所有目录、文件的集合,也称为文件系统,比如我们常说:“挂接硬盘第二个分区”、“挂接硬盘第二个分区上的文件系统”。
上篇文章,使用BusyBox构建了基础的嵌入式Linux系统的根文件系统,基本的功能可以正常运行,但在这个基础功能上,还要许多地方需要完善。
在第一期视频 : 第0课第7节_刚接触开发板之制作根文件系统及初试驱动.wmv ,因为要测试驱动,所以必须要把驱动程序弄到开发板里才行。 于是韦老师介绍了两种方式:
一、Linux内核的组成 相关概念: Linux系统的组成部分:内核+根文件系统 内核:进程管理、内存管理、网络协议栈、文件系统、驱动程序。 IPC(Inter-Process Communication进程间通信):就是指多个进程之间相互通信,交换信息的方法。Linux IPC基本上都是从Unix平台上继承而来的。主要包括最初的Unix IPC,System V IPC以及基于Socket的IPC。另外,Linux也支持POSIX IPC。 运行中的系统环境可分为两层:内核空间、用
根文件系统是Linux内核启动之后挂载的第一个文件系统,上篇文章里已经介绍过,如何使用busybox来制作根文件系统。这篇文章介绍根文件系统制作成功后,如何让内核找到文件系统,并完成挂载,进入到系统命令行终端。
在Linux的世界里,mkinitrd命令扮演着重要的角色,它帮助我们在系统启动时加载必要的驱动程序和文件系统,确保系统的顺畅运行。本文将带您深入了解mkinitrd命令,包括它的定义、工作原理、参数、实际应用示例,以及使用时的注意事项和最佳实践。
initramfs概述 initramfs与initrd类似,也是初始化好了且存在于ram中的,可以压缩也可以不压缩。但是目前initramfs只支持cpio包格式,它会被populate_rootfs->unpack_to_rootfs(&__initramfs_start, &__initramfs_end – &__initramfs_start, 0)函数(解压缩、)解析、安装。
提醒:本文已有自动构建的项目支持,请移步到:再续【从零使用qemu模拟器搭建arm运行环境】
在 ubuntu cdimg[1] 下载,选择 ubuntu-base-16.04.6-base-armhf.tar.gz。
可能是年前跳槽的比较多,遇到不少同学咨询到嵌入式行业发展和职业规划的问题,这里总结一下嵌入式行业的机遇和选择,希望对读者们有所帮助。 我们暂且宏观上把程序员分为3类:业务类,专业类,系统类。 业务类 业务类更多的是在应用程序。随着移动互联网的快速发展出现一批 UI 设计师,这里的设计师是指 APP 的界面设计,在注重用户体验的今天对于界面的设计出现水涨船高的需求。一时间 Android, IOS 的 APP 开发者如雨后春笋般涌出,待遇也是不低。高级的应用程序员除了界面的开发外也会涉及程序内部的业务逻辑,现
可能是年前跳槽的比较多,遇到不少同学咨询到嵌入式行业发展和职业规划的问题,这里总结一下嵌入式行业的机遇和选择,希望对读者们有所帮助。
一、initramfs是什么 在2.6版本的linux内核中,都包含一个压缩过的cpio格式的打包文件。当内核启动时,会从这个打包文件中导出文件到内核的rootfs文件系统,然后内核检查rootfs中是否包含有init文件,如果有则执行它,作为PID为1的第一个进程。这个init进程负责启动系统后续的工作,包括定位、挂载“真正的”根文件系统设备(如果有的话)。如果内核没有在rootfs中找到init文件,则内核会按以前版本的方式定位、挂载根分区,然后执行 /sbin/init程序完成系统的后续初始化工作。 这个压缩过的cpio格式的打包文件就是initramfs。编译2.6版本的linux内核时,编译系统总会创建initramfs,然后把它与编译好的内核连接在一起。内核源代码树中的usr目录就是专门用于构建内核中的initramfs的,其中的initramfs_data.cpio.gz文件就是initramfs。缺省情况下,initramfs是空的,X86架构下的文件大小是134个字节。
早期时,启动一台计算机意味着要给计算机喂一条包含引导程序的纸带,或者手工使用前端面板地址/数据/控制开关来加载引导程序。尽管目前的计算机已经装备了很多工具来简化引导过程,但是这一切并没有对整个过程进行必要的简化。
不少用户希望通过将 Flash-Friendly File-System (F2FS) 作为根文件系统来启动和运行 Debian,现在这个目标将有望达成了。尽管 F2FS 早已问世,并且得到了越来越多的采用,尤其是在 Android 移动设备上,但默认情况下,大多数 Linux 发行版都不允许默认从 F2FS 文件系统进行引导。
整个嵌入式系统的加载启动任务完全交给Bootloader完成,它的主要任务是将内核映象从硬盘读到RAM中,然后跳转到内核入口启动内核(操作系统)!通俗来讲,Bootloader的作用就是初始化硬件,启动操作系统。
可能是最近跳槽的比较多,遇到不少同学咨询到嵌入式行业发展和职业规划的问题,这里总结一下嵌入式行业的机遇和选择,希望对读者们有所帮助。
Buildroot是Linux平台上一个构建嵌入式Linux系统的框架,整个Buildroot是由Makefile脚本和Kconfig配置文件构成。可以和编译Linux内核一样,通过buildroot配置,menuconfig修改,编译出一个完整的可以直接烧写到机器上运行的Linux系统软件(包含boot、kernel、rootfs以及rootfs中的各种库和应用程序)。制作的rootfs通常需要包含很多第三方软件,比如busybox,udhcpc,tftp,apache,sqlite,PHP,iptable,DNS等,为避免复杂的移植工作,在buildroot中通过menuconfig配置我们根文件系统中需要的功能,将不需要的去掉,再执行make编译,buildroot就会自动从指定的服务器上下载源码包,自动编译,自动搭建我们所需要的嵌入式根文件系统。
作者: 付汉杰 hankf@xilinx.com hankf@amd.com 测试环境: Vivado/PetaLinux 2021.2, Linux 5.10.0,VCK190
接触Freescale/NXP的I.MX6处理器大概有了两年多的时间,对于一个最初玩MCU的我来说,真是面临了很多的挑战。最让我感到郁闷和崩溃的是那个官方的基于Yocto的开发环境,搭建它要求真是太高了,机器得有上百G的空间,Ubuntu系统版本也有要求,另外还得去理解Yocto的架构。我在尝试过两次之后准备彻底的放弃研究它了。前两天由于工作需要,不得不再一次面对要自己去编译文件系统的问题,碰巧在网上看到有人用Buildroot弄成功过,我尝试了下,没太费力气就成功了,Buildroot比Yocto简单太多了。特以此文记录下,希望对大家有所帮助。
我在100ASK_IMX6ULL售后群里,发现很多初学者只有单片机基础,甚至没有单片机基础。在学习Linux时,对很多概念比较陌生,导致不知道学什么,也不知道学了之后有什么用。所以我趁着五一假期,编写此文。
嵌入式系统变得越来越复杂, 它们的软件也反映了这种复杂性的增加。 为了支持新的特性和修复,很有必要让嵌入式系统上的软件 能够以绝对可靠的方式更新。 在基于linux的系统上,我们可以在大多数情况下找到以下元素:
在这里总结一下我在移植Linux2.6.22.6内核过程时的步骤。移植成功后最终能挂接做好的根文件系统,并且启动第一个init程序。移植的步骤如下:
一些基于 Linux 的计算机系统系统需要一个intramfs才能正常启动。在本指南中,将说明 initramfs 的概念,以及如何正确地创建和管理 initramfs。
领取专属 10元无门槛券
手把手带您无忧上云