根据清洗规则,输出过滤后的数据。 1. 输入数据 ? 2. 期望输出数据 都是合法的数据 2. 代码实现 1....* mapreduce0422 - the name of the current project. */ public class LogBean { private String remote_addr...* mapreduce0422 - the name of the current project. */ public class LogMapper extends Mapper<LongWritable...; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat...* mapreduce0422 - the name of the current project. */ public class LogDriver { public static void
文章目录 3-网站日志分析案例-MapReduce执行日志清洗 准备环境: 1.数据介绍 2.基于IDEA创建Maven工程 3.日志清洗 创建日志清洗类 创建MR 导入HDFS 4.问题解决 问题1:...问题2: 总结 3-网站日志分析案例-MapReduce执行日志清洗 准备环境: Linux环境 Windows环境 均做了调试 本文代码是基于window开发,因为数据量较大时,相比虚拟机,本地运行更顺畅些...; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat...; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class LogCleanJob { private...本文主要实现日志的清洗,将54w条日志数据进行清洗,清洗后得到17w条数据。
本次博主分享的是MapReduce的另一进阶知识计数器应用及数据清洗(ETL)。希望大家能够喜欢 一. 计数器应用 Hadoop为每个作业维护若干内置计数器,以描述多项指标。 ...1.2 计数器案例 通过下面的数据清洗案例分析 二. 简单的数据清洗案例 在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。...2.2 需求分析 需要在Map阶段对输入的数据根据规则进行过滤清洗。 2.3 代码实现 1....; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat...* mapreduce0422 - the name of the current project. */ public class ETLDriver { public static void
通过mapreduce清洗数据绑定到hive,再通过hive查询出结果集导入到hive的表,再通过sqoop导出到mysql 1.在hive中创建表 create external table mydb.access...(ip string,day string,url string,upflow string) row format delimited fields terminated by ','; 2.加载清洗后的数据到刚创建的表...insert into mydb.upflow select ip, sum(upflow) as sum from mydb.access group by ip order by sum desc; 5.在mysql...中创建一张用于存放结果集的表 create table upflow ( ip varchar(200), sum varchar(200) ); 6.通过sqoop将hive中的结果集导入mysql...中的表 sqoop export --connect jdbc:mysql://localhost:3306/test --username root --password admin --table
对给定的数据利用MapReduce编程实现数据的清洗和预处理,编程实现数据存储到HBase数据库,实现数据的增删改查操作接口,同时对MapReduce处理好的数据利用Hive实现数据的基本统计。...设计要求: 根据数据特征,设计一个任务场景,利用MapReduce编程实现数据的清洗和预处理。...import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job...; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat...; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class step0 { final static
有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv、uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,...好了言归正传,简单的说说背景、原理以及需要注意的地方: 1、为了方便 MapReduce 直接访问关系型数据库(Mysql,Oracle),Hadoop提供了DBInputFormat和DBOutputFormat...通过DBInputFormat类把数据库表数据读入到HDFS,根据DBOutputFormat类把MapReduce产生的结果集导入到数据库表中。...至少在我的 0.20.203 中的 org.apache.hadoop.mapreduce.lib 下是没见到 db 包,所以本文也是以老版的 API 来为例说明的。...3、运行MapReduce时候报错:java.io.IOException: com.mysql.jdbc.Driver,一般是由于程序找不到mysql驱动包。
DBOutputFormat把MapReduce结果输出到mysql中 现在有一个需求:就是如何使用DBOutputFormat把MapReduce产生的结果输出到mysql中。...import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job...; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.db.DBConfiguration...; import org.apache.hadoop.mapreduce.lib.db.DBOutputFormat; import org.apache.hadoop.mapreduce.lib.db.DBWritable...; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; public class mysqlTestMark_to_win {
1000000 为错误折行数据,用lag函数合并到上一行 # instr(reverse(txt),',') 取得最后一个逗号的位置 # sleep 1 为缓解负载压力 mysql...-u root -p123456 -S /data/18251/mysqldata/mysql.sock -Dtest -e "${line}" mysql -u root -p123456...-S /data/18251/mysqldata/mysql.sock -Dtest -e " insert into t1 (sdate,userid,qu_title,qu_item)
数据清洗 一般义的清洗 特殊字符 在数据清洗中最常见的就是特殊字符,一般的特殊字符可以直接替换掉如地址码中最常见的’#’,像这种直接替换为号即可。...全角半角转换 数据由于来源或采集问题,可能会有全角的数字或字母,而一般的系统都不会允许有这种问题,所以需要将这些问题在清洗步骤中处理掉。...错/别字处理 错别字问题在数据清洗中是难度比较大的一部分工作,在这部分工作中,首先要找出错别字,并建立错别字对应的正确字符串的对应关系,然后使用程序批量的完成替换 空值检测 空值是要在数据清洗中过滤掉的...清洗中常用的工具与技术 如果要做地理数据的相关处理,那么FME是应该首选工具,当然,清洗也属于数据处理的范畴。...综上,在数据清洗中,能够掌握FME与Python基本就够了,如果你还会点正则,那就基本上是完美了!就是这样,各位,节日快乐!晚安!
从HBASE读取清洗过的数据,写入到mysql的表中 NewInstallUserRunner.java 计算新增用户入口类 NewInstallUserRunner的所有属性方法 main方法: public...com.sxt.transformer.mr.nu.StatsUserNewInstallUserCollector 输出到mysql... 输出到mysql的链接信息 transformer-env.xml getConf方法实现 @Override public Configuration getConf
这篇文章讲述的是数据存储方式和数据类型等基本概念、数据清洗的必要性和质量评价的关键点。希望这篇数据清洗的文章对您有所帮助!...二、数据清洗 1、什么是数据清洗 脏数据 ?...数据清洗在大数据分析流程中的位置 ?...2、为什么要进行数据清洗 从不同渠道获得的数据,集成在一起,组成新的数据集,需要进行数据清洗,来保证数据集的质量 数据分析算法对输入的数据集有要求 显示情况下的数据集质量不禁如人意,需要数据清洗 3、数据存在的问题...四、数据清洗的主要内容 ?
MapReduce概要 背景 几个小时要处理完TB的数据,但是这些程序一般都不是分布式系统人员开发的,使用起来因为一些分布式的系统问题,会非常的痛苦 总体目标 非专业的分布式系统开发人员可以轻松的开发高效的处理大数据的程序...reduce这种模式 小数据不适合,因为成本太高 对于大数据的更新,例如:在大索引中增加些新的文件 不确定的读(Map 和 Reduce都不能确定输入) 多次shuffles,例如:page-rank 总结 MapReduce...的出现使得集群计算变的流行,但是MapReduce也有优缺点: 缺点:不是最有效或者灵活的 有点:扩展性好,容易编程,错误处理和数据移动都被隐藏了
; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat...; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat...输出的基类,所有 实现MapReduce输出都实现了OutputFormat接口。...context.write(k, NullWritable.get()); } } } FRecordWriter 继承RecordWriter 初始化数据流并且完整业务逻辑 而且在这个类中还可以写入MySQL...; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
MapReduce.png MapReduce 源码讲解 shuffle过程 1.圆环代表buffer环,不断的有k,v往里存储,超过一定的量就会发生溢写 2.溢写需要把这个数据拉取出来,但是不知道每个数据的位置...HDFS • 最终提交作业到JobTracker 问题 · JobTracker:负载过重,单点故障 · 资源与计算强耦合,其他计算框架需要重复实现资源管理,例如如果用spark也要进行调用,不知道哪个是被MapReduce
Mapreduce TOC mapreduce原理 图片 MapReduce代码实现 mapper类 @Slf4j public class WcMapper extends Mapper<LongWritable...任务 物理层优化器进行MapReduce任务的变换,生成最终的执行计划 MapReduce实现基本SQL操作的原理 Join的实现原理 select u.name, o.orderid from order...MapReduce的过程如下: 图片 Group By的实现原理 select rank, isonline, count(*) from city group by rank, isonline; 将...GroupBy的字段组合为map的输出key值,利用MapReduce的排序,在reduce阶段保存LastKey区分不同的key。...这种实现方式很好的利用了MapReduce的排序,节省了reduce阶段去重的内存消耗,但是缺点是增加了shuffle的数据量。
所以在进行数据分析前,我们必须对数据进行清洗。需要考虑数据是否需要修改、如何修改调整才能适用于之后的计算和分析等。 数据清洗也是一个迭代的过程,实际项目中可能需要不止一次地执行这些清洗操作。
数据清洗是整个数据分析过程的第一步,就像做一道菜之前需要先择菜洗菜一样。数据分析师经常需要花费大量的时间来清洗数据或者转换格式,这个工作甚至会占整个数据分析流程的80%左右的时间。...在这篇文章中,我尝试简单地归纳一下用Python来做数据清洗的7步过程,供大家参考。...# 可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。 DataDF.isnull().sum().sort_values(ascending=False) ?...可能会存在有标点符号掺杂/大小写不一致/空格重复出现等问题 6)消灭空值:CustomerID、Description、Country和UnitPrice都出现了NaN值,需要去掉 于是下面就开始后续的数据清洗
Pandas 数据清洗常见方法 01 读取数据 df=pd.read_csv('文件名称') 02 查看数据特征 df.info() 03 查看数据量 df.shape 04 查看各数字类型的统计量 df.describe
简介 2004 年发表了 MapReduce 的论文,是一个分布式计算的框架。...当你仔细了解 MapReduce 的框架之后,你会发现 MapReduce 的设计哲学和 Unix 是一样的,叫做“Do one thing, and do it well”,也就是每个模块只做一件事情...数据处理 作为一个框架,MapReduce 设计的一个重要思想,就是让使用者意识不到“分布式”这件事情本身的存在。从设计模式的角度,MapReduce 框架用了一个经典的设计模式,就是模版方法模式。...而从设计思想的角度,MapReduce 的整个流程,类似于 Unix 下一个个命令通过管道把数据处理流程串接起来。 MapReduce 的数据处理设计很直观,并不难理解。...还有一点也和 GFS 一样,MapReduce 论文发表时的硬件,用的往往是 100MB 或者 1GB 的网络带宽。所以 MapReduce 框架对于这一点,就做了不少性能优化动作。
断点清洗 如果你有大量的原始数据需要清洗,要一次清洗完可能需要很久,有可能是5分钟,10分钟,一小时,甚至是几天。实际当中,经常在洗到一半的时候突然崩溃了。...假设你有100万条记录,你的清洗程序在第325392条因为某些异常崩溃了,你修改了这个bug,然后重新清洗,这样的话,程序就得重新从1清洗到325391,这是在做无用功。其实可以这么做: 1....让你的清洗程序打印出来当前在清洗第几条,这样,如果崩溃了,你就能知道处理到哪条时崩溃了。 2. 让你的程序支持在断点处开始清洗,这样当重新清洗时,你就能从325392直接开始。...当所有记录都清洗结束之后,再重新清洗一遍,因为后来修改bug后的代码可能会对之前的记录的清洗带来一些变化,两次清洗保证万无一失。但总的来说,设置断点能够节省很多时间,尤其是当你在debug的时候。...把清洗日志打印到文件中 当运行清洗程序时,把清洗日志和错误提示都打印到文件当中,这样就能轻松的使用文本编辑器来查看他们了。
领取专属 10元无门槛券
手把手带您无忧上云