首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

MNIST数据集手写数字分类

目录0.编程环境1、下载并解压数据集2、完整代码3、数据准备4、数据观察4.1 查看变量mnist的方法和属性4.2 对比三个集合4.3 mnist.train.images观察4.4 查看手写数字图5...4、数据观察本章内容主要是了解变量mnist中的数据内容,并掌握变量mnist中的方法使用。...4.4 查看手写数字图从训练集mnist.train中选取一部分样本查看图片内容,即调用mnist.train的next_batch方法随机获得一部分样本,代码如下:import matplotlib.pyplot...第1行代码定义形状为784*10的权重矩阵Weights; 第2行代码定义形状为1*10的偏置矩阵biases; 第3行代码定义先通过矩阵计算,再使用激活函数softmax得出的每个分类的预测概率predict_y...; 第4行代码定义损失函数loss,多分类问题使用交叉熵作为损失函数。

2.7K20

基于tensorflow的MNIST数据集手写数字分类预测

://mp.weixin.qq.com/s/DJxY_5pyjOsB70HrsBraOA 2.下载并解压数据集 MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w...5.数据观察 本章内容主要是了解变量mnist中的数据内容,并掌握变量mnist中的方法使用。...5.4 查看手写数字图 从训练集mnist.train中选取一部分样本查看图片内容,即调用mnist.train的next_batch方法随机获得一部分样本,代码如下: import matplotlib.pyplot...; 第4行代码定义损失函数loss,多分类问题使用交叉熵作为损失函数。...5.如何进一步提高模型准确率,请阅读本文作者的另一篇文章《基于tensorflow+DNN的MNIST数据集手写数字分类预测》,链接:https://www.jianshu.com/p/9a4ae5655ca6

1.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Keras+CNN的MNIST数据集手写数字分类

    3.数据观察 3.1 使用keras库中的方法加载数据 本文使用keras.datasets库的mnist.py文件中的load_data方法加载数据。...第1个元素是训练集的数据,第2个元素是测试集的数据; 训练集的数据是1个元组,里面包括2个元素,第1个元素是特征矩阵,第2个元素是预测目标值; 测试集的数据是1个元组,里面包括2个元素,第1个元素是特征矩阵...; 第8行代码使用keras中的方法对数字的标签分类做One-Hot编码。...; 第2-4行代码将原始的特征矩阵做数据处理形成模型需要的数据; 第5行代码使用keras中的方法对数字的标签分类做One-Hot编码。...上面一段代码的运行结果如下: 第7-8行代码使用测试集的数据做模型评估,打印损失函数值和准确率; 第9-10行代码使用训练集的数据做模型评估,打印损失函数值和准确率。

    2.4K20

    基于tensorflow+RNN的MNIST数据集手写数字分类

    MNIST是Mixed National Institue of Standards and Technology database的简称,中文叫做美国国家标准与技术研究所数据库。...此文在上一篇文章《基于tensorflow+DNN的MNIST数据集手写数字分类预测》的基础上修改模型为循环神经网络模型,模型准确率从98%提升到98.5%,错误率减少了25% 《基于tensorflow...+DNN的MNIST数据集手写数字分类预测》文章链接:https://www.jianshu.com/p/9a4ae5655ca6 0.编程环境 操作系统:Win10 tensorflow版本.../tutorials/machine-learning/tensorflow/ 2.配置环境 使用循环神经网络模型要求有较高的机器配置,如果使用CPU版tensorflow会花费大量时间。...在谷歌云服务器上搭建深度学习平台》,链接:https://www.jianshu.com/p/893d622d1b5a 3.下载并解压数据集 MNIST数据集下载链接: https://pan.baidu.com

    1.4K30

    基于tensorflow+DNN的MNIST数据集手写数字分类预测

    此文在上一篇文章《基于tensorflow的MNIST数据集手写数字分类预测》的基础上添加了1个隐藏层,模型准确率从91%提升到98% 《基于tensorflow的MNIST数据集手写数字分类预测》文章链接...://mp.weixin.qq.com/s/H9I0KX0CBkHeap5Xpwp-5Q 2.下载并解压数据集 MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w...5.数据观察 本章内容主要是了解变量mnist中的数据内容,并掌握变量mnist中的方法使用。...5.4 查看手写数字图 从训练集mnist.train中选取一部分样本查看图片内容,即调用mnist.train的next_batch方法随机获得一部分样本,代码如下: import matplotlib.pyplot...第13行代码定义优化器optimizer,作者使用过GradientDescentOptimizer、AdamOptimizer,经过实践对比,AdagradOptimizer在此问题的收敛效果较好,读者可以自己尝试设置不同的优化的效果

    1.4K30

    基于tensorflow+CNN的MNIST数据集手写数字分类预测

    此文在上一篇文章《基于tensorflow+DNN的MNIST数据集手写数字分类预测》的基础上修改模型为卷积神经网络模型,模型准确率从98%提升到99.2% 《基于tensorflow+DNN的MNIST...数据集手写数字分类预测》文章链接:https://www.jianshu.com/p/9a4ae5655ca6 0.编程环境 安装tensorflow命令:pip install tensorflow...://mp.weixin.qq.com/s/MTugq-5AdPGik3yJb9yDJQ 2.下载并解压数据集 MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w...image.png 3.配置环境 使用卷积神经网络模型要求有较高的机器配置,如果使用CPU版tensorflow会花费大量时间。...请读者对照下图,确保自己的代码文件与数据、模型放置在正确的路径下。 ?

    2K31

    R语言对MNIST数据集分析:探索手写数字分类

    我想进一步探讨数据科学和机器学习如何相互补充,展示我将如何使用数据科学来解决图像分类问题。我们将使用经典的机器学习挑战:MNIST数字数据库。 ?...面临的挑战是根据28×28的黑白图像对手写数字进行分类。MNIST经常被认为是证明神经网络有效性的首批数据集之一。...预处理 默认的MNIST数据集的格式有些不方便,但Joseph Redmon已经帮助创建了CSV格式的版本。我们可以下载它的readr包。...但分类可能具有挑战性的原因之一是,一些数字将远远超出标准。探索非典型案例很有用,因为它可以帮助我们理解该方法失败的原因,并帮助我们选择方法和工程师功能。...具有非常红色或非常蓝色区域的对将很容易分类,因为它们描述的是将数据集整齐划分的特征。这证实了我们对0/1易于分类的怀疑:它具有比深红色或蓝色更大的区域。

    1.4K10

    基于MNIST数据集的实现手写数字识别

    下载并加载数据集 我们将使用MNIST数据集,该数据集包含手写数字的灰度图像。数据集可以通过下载功能获取,并解压到指定目录。...数据预处理 为了让模型更好地学习,我们需要对图像数据进行预处理。我们将图像数据归一化,并将其转换为模型可以接受的格式。...定义神经网络模型 我们将定义一个简单的神经网络模型来进行手写数字识别。该模型包含三个全连接层和两个ReLU激活函数。...定义损失函数和优化器 我们使用交叉熵损失函数和随机梯度下降(SGD)优化器来训练我们的模型。...进行预测并显示结果 最后,我们使用加载的模型进行预测,并展示预测结果。

    19143

    学界 | Fashion-MNIST:替代MNIST手写数字集的图像数据集

    机器之心转载 公众号:PaperWeekly 作者:肖涵 FashionMNIST 是一个替代 MNIST 手写数字集 [1] 的图像数据集。...经典的 MNIST 数据集 [1] 包含了大量的手写数字。十几年来,来自机器学习、机器视觉、人工智能、深度学习领域的研究员们把这个数据集作为衡量算法的基准之一。...Fashion-MNIST 的目的是要成为 MNIST 数据集的一个直接替代品。作为算法作者,你不需要修改任何的代码,就可以直接使用这个数据集。...如下图,在 MNIST 上的想法没法迁移到真正的机器视觉问题上。 ? 2. 获取数据 你可以使用以下链接下载这个数据集。...而我们更推荐的方法是使用 Dockerfile 打包部署后以 Container 的方式运行。 我们欢迎你提交自己的模型评测,请使用 Github 新建一个 Issue。

    4.2K90

    利用PyTorch实现基于MNIST数据集的手写数字识别

    利用PyTorch实现基于MNIST数据集的手写数字识别 简介:如何使用PyTorch实现基于MNIST数据集的手写数字识别。...手写数字识别是计算机视觉领域的经典问题之一,旨在将手写数字图像转换为对应的数字标签。 数据集简介 MNIST数据集是一个经典的手写数字数据集,包含了60000张训练图像和10000张测试图像。...每张图像的大小为28x28像素,图像内容为0到9的手写数字。我们将使用这个数据集来训练和测试我们的模型。...训练周期增加到10时,测试集的准确率达到了99%左右,模型已经取得了不错的分类效果。 最后的输出展示了训练后的神经网络模型的结构,包括卷积层和全连接层的参数设置。...这个结果表明,LeNet模型在MNIST数据集上取得了良好的分类效果,并且模型的结构也得到了有效的训练和优化。

    16310

    深度学习实战-MNIST数据集的二分类

    MNIST数据集:二分类问题 MNIST数据集是一组由美国高中生和人口调查局员工手写的70,000个数字的图片,每张图片上面有代表的数字标记。...这个数据集被广泛使用,被称之为机器学习领域的“Hello World”,主要是被用于分类问题。...本文是对MNIST数据集执行一个二分类的建模 关键词:随机梯度下降、二元分类、混淆矩阵、召回率、精度、性能评估 导入数据 在这里是将一份存放在本地的mat文件的数据导进来: In [1]: import...y_train == 0) # 挑选出5的部分 y_test_0 = (y_test == 0) 随机梯度下降分类器SGD 使用scikit-learn自带的SGDClassifier分类器:能够处理非常大型的数据集...数据出发,通过SGD建立一个二元分类器,同时利用交叉验证来评估我们的分类器,以及使用不同的指标(精度、召回率、精度/召回率平衡)、ROC曲线等来比较SGD和RandomForestClassifier不同的模型

    82530

    使用Google的Quickdraw创建MNIST样式数据集!

    对于那些运行深度学习模型的人来说,MNIST是无处不在的。手写数字的数据集有许多用途,从基准测试的算法(在数千篇论文中引用)到可视化,比拿破仑的1812年进军更为普遍。...数字如下所示: 它经久不衰的主要原因是缺乏替代品。在这篇文章中,我想介绍另一种方法,就是Google的QuickDraw数据集。...图纸如下所示: 构建您自己的QuickDraw数据集 我想了解您如何使用这些图纸并创建自己的MNIST数据集。...所有数据都位于Google的云端控制台中,但是对于这些图像,您需要使用numpy_bitmaps的这个链接。 您应该到达一个允许您下载任何类别图像的页面。...它们以hdf5格式保存,这种格式是跨平台的,经常用于深度学习。 用QuickDraw代替MNIST 我使用这个数据集代替MNIST。

    1.7K80

    使用 Transformers 在你自己的数据集上训练文本分类模型

    之前涉及到 bert 类模型都是直接手写或是在别人的基础上修改。但这次由于某些原因,需要快速训练一个简单的文本分类模型。其实这种场景应该挺多的,例如简单的 POC 或是临时测试某些模型。...我的需求很简单:用我们自己的数据集,快速训练一个文本分类模型,验证想法。 我觉得如此简单的一个需求,应该有模板代码。但实际去搜的时候发现,官方文档什么时候变得这么多这么庞大了?...瞬间让我想起了 Pytorch Lightning 那个坑人的同名 API。但可能是时间原因,找了一圈没找到适用于自定义数据集的代码,都是用的官方、预定义的数据集。...并且我们已将数据集分成了 train.txt 和 val.txt 。...代码 加载数据集 首先使用 datasets 加载数据集: from datasets import load_dataset dataset = load_dataset('text', data_files

    2.4K10

    Kannada-MNIST:一个新的手写数字数据集

    虽然这些数字符号是坎纳达(Kannada)语言,但是Kannada-MNIST数据集是为了替代MNIST数据集。...此外,我正在分发一个用同一种语言(主要是该语言的非本地用户)编写的10k个手写数字的额外数据集Dig-MNIST,可以用作额外的测试集。 资源列表: GitHub?...数据集策划: Kannada-MNIST: 在印度班加罗尔招募了65名志愿者,他们是该语言的母语使用者和日常使用者。每位志愿者填写一张有着32×40网格的A3纸。...与MNIST比较: 1:平均像素强度分布 2:形态属性 3:PCA分析 4:UMAP可视化 一些分类基准点: 我使用标准的MNIST-cnn体系结构来获得一些基本的准确度基准(参见下图) (a) Kannada-MNIST...对使用字体[1]生成的纯合成数据进行训练,并进行增强,以实现Kannada-MNIST和Dig-MNIST数据集的高准确度。 跨不同的语言的来复制本文中描述的过程,特别是印度里的语言。

    1.5K30

    图像分类经典项目:基于开源数据集Fashion-MNIST的应用实践

    作者:何新,Datawhale优秀学习者 简介:何新,武汉理工大学硕士 https://github.com/whut2962575697 图像分类是计算机视觉和数字图像处理的一个基本问题。...使用这些技巧,在开源Fashion-MNIST数据集上达到了96.21%的Acc,为大家提供了一个简单有效的深度卷积神经网络的图像分类Baseline。...后台回复关键词 图像分类 可打包下载baseline及数据集 数据集 MNIST 相信大家对经典的MNIST数据集都不陌生,它包含了大量的手写数字,可谓是算法工作者的必测数据集之一。...; 对于已有的MNIST训练程序,只要修改下代码中的数据集读取路径,或者残暴的用Fashion-MNIST数据集文件将MNIST覆盖,替换就瞬间完成了。...为比较这些技巧在分类模型上的性能,设计了一系列的消融实验,最后在使用了一些比较好的数据增强方法和训练技巧后在Fashion Minist数据集上的ACC达到了96.21%。

    2.5K30

    在您现有的向量数据库中使用LLM中您自己的数据

    向量数据库 允许您使用来自内部数据存储的数据来增强您的 LLM 模型。使用本地的事实性知识提示 LLM 可以让您获得针对组织已经了解的情况量身定制的响应。这减少了“AI 幻觉”并提高了相关性。...您甚至可以询问 LLM 在其答案中添加对它使用的原始数据的引用,以便您自己检查。毫无疑问,供应商已经推出了专有的向量数据库解决方案,并将其宣传为“魔杖”,可以帮助您消除任何 AI 幻觉的担忧。...如果您已经在使用Apache Cassandra 5.0、OpenSearch 或PostgreSQL,那么您的向量数据库成功已经准备就绪。没错:无需昂贵的专有向量数据库产品。...如果您还没有使用这些免费且完全开源的数据库技术,那么您的生成式 AI 愿望是迁移的好时机——它们都是企业级的,并且避免了专有系统的陷阱。...向量数据库存储嵌入向量,嵌入向量是表示与数据片段相对应的空间坐标的数字列表。相关数据将具有更接近的坐标,允许 LLM 理解复杂和非结构化数据集,以实现生成式 AI 响应和搜索功能等功能。

    15610

    Pytorch 基于NiN的服饰识别(使用Fashion-MNIST数据集)

    ✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 个人主页:小嗷犬的博客 个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。...本文内容:Pytorch 基于NiN的服饰识别(使用Fashion-MNIST数据集) 更多内容请见 Pytorch 基于LeNet的手写数字识别 Pytorch 基于AlexNet的服饰识别(使用...Fashion-MNIST数据集) Pytorch 基于VGG-16的服饰识别(使用Fashion-MNIST数据集) ---- 本文目录 介绍 1.导入相关库 2.定义 NiN 网络结构 3.下载并配置数据集和加载器...数据集: Fashion-MNIST 是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。...其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。 Fashion-MNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。

    50810

    Pytorch 基于AlexNet的服饰识别(使用Fashion-MNIST数据集)

    本文内容:Pytorch 基于AlexNet的服饰识别(使用Fashion-MNIST数据集) 更多内容请见 Python sklearn实现SVM鸢尾花分类 Python sklearn实现K-means...鸢尾花聚类 Pytorch 基于LeNet的手写数字识别 ---- 本文目录 介绍 1.导入相关库 2.定义 AlexNet 网络结构 3.下载并配置数据集和加载器 4.定义训练函数 5.训练模型(或加载模型...数据集: Fashion-MNIST 是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。...其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。 Fashion-MNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。...由于 AlexNet 是为处理 ImageNet 数据集设计的,所以输入图片尺寸应为 224*224,这里我们将 28*28 的 Fashion-MNIST 图片拉大到 224*224。

    80420
    领券