首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    论文研读-基于决策变量分析的大规模多目标进化算法

    [1] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York, NY, USA: Wiley, 2001. [2] Q. Zhang and H. Li, “MOEA/D: A multi-objective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007. [3] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective selection based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181, no. 3, pp. 1653–1669, 2007. [4] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014. [5] T. Weise, R. Chiong, and K. Tang, “Evolutionary optimization: Pitfalls and booby traps,” J. Comput. Sci. Technol., vol. 27, no. 5, pp. 907–936, 2012. [6] M. Potter and K. Jong, “A cooperative coevolutionary approach to function optimization,” in Proc. Int. Conf. Parallel Probl. Solv. Nat., vol. 2. Jerusalem, Israel, 1994, pp. 249–257. [7] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15, pp. 2985–2999, 2008. [8] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 210–224, Apr. 2012. [9] Y. Mei, X. Li, and X. Yao, “Cooperative co-evolution with route distance grouping for large-scale capacitated arc routing problems,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 435–449, Jun. 2014. [10] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA, USA: Addison-Wesley, 1989. [11] Y. Chen, T. Yu, K. Sastry, and D. Goldberg, “A survey of linkage learning techniques in genetic and evolutionary algorithms,” Illinois Genet. Algorithms Libr., Univ. Illinois Urbana-Champaign, Urbana, IL, USA, Tech. Rep. 2007014, 2007. [12] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiobjective test problems and a scalable test problem too

    07

    handler使用_java中的handler

    root@test 04:53:11>show create table t; +——-+——————————————————————————————————————————————————————————————————————————+ | Table | Create Table | +——-+——————————————————————————————————————————————————————————————————————————+ | t | CREATE TABLE `t` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `a` varchar(10) NOT NULL, `b` varchar(10) NOT NULL, PRIMARY KEY (`id`), KEY `a_b` (`a`,`b`) ) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=gbk | +——-+——————————————————————————————————————————————————————————————————————————+ 1 row in set (0.00 sec)

    02

    NC | Spatial-ID:通过迁移学习和空间嵌入进行空间高分辨转录组数据的细胞注释

    腾讯 AI Lab 联合深圳华大生命科学研究院团队,开发了一种基于自监督学习的空间转录组(spatially resolved transcriptomics,SRT)细胞注释方法Spatial-ID(SPATIAL cell type IDentifification),它集成了迁移学习和空间嵌入策略。该方法通过迁移学习从已有的单细胞转录组数据集迁移单细胞表达谱知识。该方法通过嵌入空间信息,利用细胞在空间背景下与相邻细胞之间的可能存在的交互关系或共表达模式,提升细胞类型识别的准确性,且对来自不同测序技术的数据具有较强稳健性。此外,将Spatial-ID应用于先前通过华大自主研发的时空组学技术Stereo-seq获取的小鼠大脑数据集,证实了其对具有亚细胞空间分辨率的三维大视场组织的可扩展性,这为构建大视场空间转录组脑图谱提供了一个很有前景的途径。该文章在2022年12月10日发表于Nature Communications,以下是文章的详细解读。

    01

    NC | Spatial-ID:通过迁移学习和空间嵌入进行空间高分辨转录组数据的细胞注释

    腾讯 AI Lab 联合深圳华大生命科学研究院团队,开发了一种基于自监督学习的空间转录组(spatially resolved transcriptomics,SRT)细胞注释方法Spatial-ID(SPATIAL cell type IDentifification),它集成了迁移学习和空间嵌入策略。该方法通过迁移学习从已有的单细胞转录组数据集迁移单细胞表达谱知识。该方法通过嵌入空间信息,利用细胞在空间背景下与相邻细胞之间的可能存在的交互关系或共表达模式,提升细胞类型识别的准确性,且对来自不同测序技术的数据具有较强稳健性。此外,将Spatial-ID应用于先前通过华大自主研发的时空组学技术Stereo-seq获取的小鼠大脑数据集,证实了其对具有亚细胞空间分辨率的三维大视场组织的可扩展性,这为构建大视场空间转录组脑图谱提供了一个很有前景的途径。该文章在2022年12月10日发表于Nature Communications,以下是文章的详细解读。

    03

    高并发解决方案——提升高并发量服务器性能解决思路

    一个小型的网站,可以使用最简单的html静态页面就实现了,配合一些图片达到美化效果,所有的页面均存放在一个目录下,这样的网站对系统架构、性能的要求都很简单。随着互联网业务的不断丰富,网站相关的技术经过这些年的发展,已经细分到很细的方方面面,尤其对于大型网站来说,所采用的技术更是涉及面非常广,从硬件到软件、编程语言、数据库、WebServer、防火墙等各个领域都有了很高的要求,已经不是原来简单的html静态网站所能比拟的。   大型网站,比如门户网站,在面对大量用户访问、高并发请求方面,基本的解决方案集中在这

    010
    领券