MYSQL 的CPU 使用率高,干时间长的DB们都会遇到,其实其他的数据库也都是有类似的问题,CPU一升高。大部分DBA 的首要工作就是要看是不是有大事务,大查询,慢查询等等。实际上我们是不是有更好的快速定位的方法
CPU使用率:CPU的使用率 平均负载:单位时间内的活跃线程数 用户时间:CPU在用户进程上的实际百分比 系统时间:CPU在内核上花费的实际百分比 空闲时间:系统处于在等待IO操作上的时间总和 等待:CPU花费在等待IO操作上的时间总和 Nice时间:CPU优先执行的时间百分比
什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
在日常工作中,发现 MySQL 的状态不太对劲的时候,一般都会看看监控指标,很多时候会看到熟悉的一幕:CPU 使用率又爆了。本文会简单介绍一下 MySQL 和 CPU 之间的关系,对此有一些了解之后可以更准确的判断出问题的原因,也能够提前发现一些引发 CPU 问题的隐患。
作者:付祥,现居珠海,主要负责 Oracle、MySQL、mongoDB 和 Redis 维护工作。
墨墨导读:经常会看到看到cpu 使用率非常高的情况。在这种情况下,资源的使用监控分析才是性能故障分析的根本首要任务,通过这些分析,理解服务器如何运行,资源损耗在哪些方面对问题进行故障诊断是非常有价值有意义的。
提到CPU利用率,就必须理解时间片。什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
画架构图是为了知道请求是从哪里到哪里,做性能分析一定先画个图,脑子里就会有路径的概念了。
为更好的帮助DBA运维数据库,腾讯云将于每月12日在社群直播开展DBbrain诊断日,腾讯云高级产品经理迪B哥直播解析经典数据库运维难题,结合腾讯云数据库智能管家DBbrain的能力,为大家提供问题优化思路和方法,玩转数据库! 本期诊断日主要分享内容:如何使用智能管家DBbrain解决MySQL实例CPU使用率过高的问题? 1 前言 在使用MySQL的过程中,经常会遇到由于数据库性能问题导致的业务故障。对于研发、运营、产品等非运维职能的同事来说,往往更愿意请DBA来协助定位问题和优化。如果公司确有DBA
爱可生 DBA 团队成员,擅长故障分析、性能优化,个人博客:https://www.jianshu.com/u/a95ec11f67a8,欢迎讨论。
通过揉和众多设计良好的 Nginx 模块,OpenResty 有效地把 Nginx 服务器转变为一个强大的 Web 应用服务器,基于它开发人员可以使用 Lua 编程语言对 Nginx 核心以及现有的各种 Nginx C 模块进行脚本编程,构建出可以处理一万以上并发请求的极端高性能的 Web 应用。
作者 | Lasse Vilhelmsen 译者 | 刘雅梦 策划 | 李冬梅 文描述了一个自动化的 CPU 垂直扩展系统的实现,在该系统中,优步(Uber)上运行的每个存储工作负载都被分配到了理想数目的内核。如今,该框架已被用于调整超过 50 万个 Docker 容器,自其建立以来,已净减少了超过 12 万个内核的分配,从而每年节省了数百万美元的基础设施支出。 在优步(Uber),我们在容器化环境中运行所有的存储工作负载,如 Docstore、 Schemaless、M3、MySQL、Cass
对一个固定的技术组件的分析优化思路,即组件不是我们开发的,但又要分析优化它,怎么办?
某项目压测后发现qps达标,服务器cpu和内存占用均在70%以下,然而mysql服务的内存占用高达100%,且并没有因为压测而产生波动。
追求 MySQL 的性能时,总听说要调整自旋锁的参数: innodb_spin_wait_delay 和 innodb_sync_spin_loops,是真的么?
本文介绍了MySQL数据库在国产化ARM环境中出现的第一个大坑——从库复制延迟。作者首先分析了导致这一现象的原因,包括主库的binlog dump线程、从库的IO线程、从库的SQL线程及协调线程等各个方面的因素。然后,作者进行了详细的调试和分析,发现了社区版MySQL在ARM架构下存在的获取CPU缓存行大小函数兼容性BUG。最后,作者提出了解决方案并在国产ARM架构中使用TXSQL避免了这个问题。
三、API的生命周期:Design(设计)、Build(构建)、Test(测试)、Document(文档)、Share(发布)、run(运行)、DownLine(下线)。
我相信你应该用过uptime命令查询系统负载的情况,或者在各种监控终端上看到过系统load这一项,但是每次问别人到底什么是系统load?系统load到达多少算过高?又有哪些原因会造成系统load过载?我发现很少有人能回答清楚,大多数都觉得系统load过载就表示CPU使用率过载、然而实际上并不完全这样的,本文就来仔细分析一下到底有哪些原因会造成系统load过载!
线上 CPU 高负载是许多运维工程师和开发人员经常面临的挑战之一。当 CPU 使用率升高时,系统性能可能会受到严重影响,因此快速定位问题所在至关重要。本文将介绍一些常见的技术和方法,帮助你迅速找到线上 CPU 高负载问题的根本原因,并提供实际代码示例。
年前本应该是回顾一年工作和收尾的阶段,奈何各种促销,活动都等着春节,因此也遇到了不少的问题,回顾了一下最近遇到的问题,发现有好几个问题比较类似,正好整理一下,作为年前收尾的案例吧。表现上都是数据库假死,无响应,发生的场景有较高的业务压力到来时,也有业务正常运行的时候,突然就出现问题了。
1、无限循环的while会导致CPU使用率飙升吗? 2、经常使用Young GC会导致CPU占用率飙升吗? 3、具有大量线程的应用程序的CPU使用率是否较高? 4、CPU使用率高的应用程序的线程数是多少? 5、处于BLOCKED状态的线程会导致CPU使用率飙升吗? 6、分时操作系统中的CPU是消耗 us还是 sy?
https://www.cnblogs.com/poloyy/category/1814570.html
公司的一个ToB系统,因为客户使用的也不多,没啥并发要求,就一直没有经过压测。这两天来了一个“大客户”,对并发量提出了要求:核心接口与几个重点使用场景单节点吞吐量要满足最低500/s的要求。
运行线程数>= min{64,实例CPU核数*4},持续粒度5s,持续3个数据点,每小时告警一次
达达是全国领先的最后三公里物流配送平台。 达达的业务模式与滴滴以及Uber很相似,以众包的方式利用社会闲散人力资源,解决O2O最后三公里即时性配送难题(目前达达已经与京东到家合并)。 达达业务主要包含两部分:商家发单,配送员接单配送,如下图所示。
一台运行了好久的服务器CPU使用率达到100%,脑海中第一个想法就是中病毒了,于是开始了我的杀毒之旅。
nodejs 提供了os.platform()和os.type(),可以用来识别操作系统平台。推荐使用: os.platform()
当你登陆到一台可能有性能问题的服务器上,你会/应该做什么?又该如何去进行初步的性能分析?
想象一下,你的厨房是一个操作系统,厨师是CPU,而菜谱上的任务就是进程。厨房的忙碌程度可以用“平均负载”来衡量,它反映了等待被处理的任务总数加上正在被厨师处理的任务数。而“CPU使用率”则相当于厨师实际在切菜、炒菜的时间比例,即厨师忙碌的具体程度。
这是系列文章的第二篇,主要探讨:Elasitcsearch CPU 使用率突然飙升,怎么办?
当我们使用top命令查看系统的资源使用情况时会看到load average,如下图所示,它表示系统在1,5,15分钟的平均工作负载。 那么什么是负载(load)呢?它和CPU的利用率又有什么关系呢
这次分享是腾讯后端面经,面试接近 1 小时,问了非常多的问题,涵盖Linux、数据库、C++、操作系统、计算机网络。
在实际的性能测试中,会遇到各种各样的问题,比如 TPS 压不上去等,导致这种现象的原因有很多,测试人员应配合开发人员进行分析,尽快找出瓶颈所在。
鱼皮最新原创项目教程,欢迎学习 大家好,我是鱼皮。今天给大家分享一篇接口性能优化干货文章。 原文链接:https://juejin.cn/post/7185479136599769125 背景 某公司的一个 ToB 系统,因为客户使用的也不多,没啥并发要求,就一直没有经过压测。这两天来了一个“大客户”,对并发量提出了要求:核心接口与几个重点使用场景单节点吞吐量要满足最低500/s的要求。 当时一想,500/s吞吐量还不简单。Tomcat按照 100 个线程,那就是单线程 1S 内处理 5 个请求,20
kubectl autoscale rc mysql-slave --min=1 --max=10 --cpu-percent=50 参数: --min (容器数量下限) --max (容器数量上限) --cpu-percent (CPU使用率达到指定百分比) 容器CPU使用率上升至50%以上时,自动扩充容器数量 容器CPU使用率下降至50%以上时,自动缩减容器数量
机器负载很高,持续一段时间负载值约 85,当前主机为 10 核,每核 2 个线程,短期的监控数据表明负载无明显波动。
在我们项目部署上线的时候,我们是不是会经常去Linux服务器上查查服务器的CPU使用率,或者是运维经常会盯Linux的CPU使用率,发现监控报了60%的一般就会报警了,到了100%那就惨啦,做我开发的我们如果自己程序运行时CPU使用率一直是100%的话,那么,我们加班肯定逃不掉了,更打击我们自己的强大的自尊心。今天我就将我们线上之前有个100%的CPU给大家讲解下,然后教大家怎么去定位然后发现到具体的函数,然后去修改它就行了
CPU密集型,也叫计算密集型,一般是指服务器的硬盘、内存硬件性能相对CPU好很多,或者使用率低很多。系统运行CPU读写I/O(硬盘/内存)时可以在很短的时间内完成,几乎没有阻塞(等待I/O的实时间)时间,而CPU一直有大量运算要处理,因此CPU负载长期过高。
1. 达达系统架构升级经验总结 1.1. 概述 达达是全国领先的最后三公里物流配送平台。达达业务主要包含两部分:商家发单,配送员接单配送。 达达的业务规模增长极大,在1年左右的时间从零增长到每天近
https://www.cnblogs.com/wuchangblog/p/13937715.html
最新将生产环境的服务器版本统一升级了一下,其中有一台(4H/8G)近两天天天CPU使用率报警(阀值>95%,探测周期60s,触发频率6次),而且load acerage也居高不下,检查了各个系统应用软件的资源使用都没有问题,也将一些可能导致CPU使用率高的软件stop掉,报警依旧。
检查腾讯云数据库 MySQL 实例的 CPU 使用率情况,如果MongoDB实例的CPU使⽤率过⾼,会导致MonogoDB响应缓慢,甚⾄业务不可⽤。
要导出MySQL日志,您可以配置MySQL以记录查询、慢查询和与复制相关的信息。您可以使用Filebeat或Fluentd等工具来收集并发送这些日志进行分析。
PolarDB Serverless脱胎于 PolarDB 团队发表在SIGMOD 2021的论文,是选取其中成熟的技术最终产品化的结果。我们借助两大核心技术,高性能全局一致性SCC和热备无感秒切,无论在跨机扩展还是跨机切换,都达到了业界领先的能力。PolarDB MySQL Serverless于去年底正式上线,目前已经有1000+用户开始上手使用。本文期望从实践角度,演示如何测试PolarDB Serverless的弹性能力。
在日常运维工作中,会碰到服务器带宽飙升致使网站异常情况。作为运维人员,我们要能非常清楚地了解到服务器网卡的流量情况,观察到网卡的流量是由哪些程序在占用着。 今天介绍一款linux下查看服务器网卡流量占用情况的工具:Nethogs,来自github上的开源工具。 它不依赖内核中的模块。当我们的服务器网络异常时,可以通过运行nethogs程序来检测是那个程序占用了大量带宽。节省了查找时间。 Nethogs安装: 方法一:在epel源中可以直接yum安装 [root@dev src]# yum install -
如果网管需要主动监测CPU使用率,可通过OID:1.3.6.1.4.1.2011.5.25.31.1.1.1.1.5获取。
领取专属 10元无门槛券
手把手带您无忧上云