Mysql5.7版本以后新增的功能,Mysql提供了一个原生的Json类型,Json值将不再以字符串的形式存储,而是采用一种允许快速读取文本元素(document elements)的内部二进制(internal binary)格式,并提供了不少内置函数,通过计算列,甚至还可以直接索引json中的数据。
这家公司的真名就叫做“三藏”,和我的名字“悟空”很契合,唐三藏给悟空面试,合情合理,还带有一丝趣味,所以我就去面试了。三藏公司是一家小厂,技术负责人面的我,欲知面试结果,文末揭晓。
那就是搞定面试官系列,我会把常见的面试知识通过这个专栏写出来,比如我们常见的 Java、MySQL、Redis、MQ 以及其他的一些技术框架。
sort buffer、内存临时表和 join buffer。这三个数据结构都是用来存放语句执行过程中的中间数据,以辅助 SQL 语句的执行的。其中,我们在排序的时候用到了 sort buffer,在使用 join 语句的时候用到了 join buffer。
主键,不可重复,自带索引,可以在定义的列名上标注,需要自己生成并维护不重复的约束。如果自己不设置@Id主键,mongo会自动生成一个唯一主键,并且插入时效率远高于自己设置主键。原因可参考上一篇mongo和mysql的性能对比。 在实际业务中不建议自己设置主键,应交给mongo自己生成,自己可以设置一个业务id,如int型字段,用自己设置的业务id来维护相关联的表。
导读 mysql在5.7版本之后出了一个json类型字段,方便存储不规则字段,常用为表单的业务字段,原先mysql加个业务字段需要修改表结构。通过json字段则不需要。 例子 没有json类型 字段 解释 id 主键 name 姓名 age 年龄 address 地址 phone 电话 isDel 是否删除 运用json类型 字段 解释 id 主键 user_json 用户json {“name”:“翟”,“age”:“26”…} isDel 是否删除 如果用户增加删除一个字段,json更加灵活,不需要
当我们使用汉语字典查找某个字时,我们会先通过拼音目录查到那个字所在的页码,然后直接翻到字典的那一页,找到我们要查的字,通过拼音目录查找比我们拿起字典从头一页一页翻找要快的多,数据库索引也一样,索引就像书的目录,通过索引能极大提高数据查询的效率。
在InnoDB中,数据会存储到磁盘上,在真正处理数据时需要先将数据加载到内存,表中读取某些记录时,InnoDB存储引擎不需要一条一条的把记录从磁盘上读出来,InnoDB采取的方式是:将数据划分为若干个页,以页作为磁盘和内存之间交互的基本单位,InnoDB中页的大小一般为 16 KB,也就是说,当需要从磁盘中读数据时每一次最少将从磁盘中读取16KB的内容到内存中,每一次最少也会把内存中的16KB内容写到磁盘中。
《「一起学」》系别终于启动了,这个系列我主要会「按照我学习的思路」,给大家更新一下,为的是「学习方法和思路」,当然重要的还有知识,以及 moon 平常是怎么学习一个新的技术的
今天分享的内容是MySQL里面的group by语句,部分案例节选自极客时间的《MySQL45讲》,大家有兴趣可以购买相应课程进行学习,废话就不多说了,直接从例子开始吧。
这里第一句话很关键,文档上说,mongoDB 是一个「文档型数据库,旨在简化开发和扩展」。
多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。
group查询就是分组查询,为什么要分组查询?因为我们想按某个维度进行统计。下面来看个图:
hash 表是一种以键 - 值存储数据的结构,通过 key 直接直接找到对应的 vale。hash 表只适用等值查询场景,对范围查找就失效了。
索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。常见的索引模型有哈希表、有序数组、B+树。
InnoDB处理数据的过程是发生在内存中的,需要把磁盘中的数据加载到内存中,如果是处理写入或修改请求的话,还需要把内存中的内容刷新到磁盘上。
同学B:因为索引其实就是一种优化查询的数据结构,比如Mysql中的索引是用B+树实现的,而B+树就是一种数据结构,可以优化查询速度,可以利用索引快速查找数据,所以能优化查询。
表中t1~t5的(ID,grade)值分别为(1,70)、(2,80)、(3,90)、(4,100)和(5,110), 此时两棵索引树的示例示意图如下。
最近在公司做了几张报表,还记得刚开始要做报表的时候都快把SQL给忘光了(当时在广州休假了1个月多,在实习期间也没咋写过SQL),回到公司的第一个需求就是做报表。
最近在公司做了几张报表,还记得刚开始要做报表的时候都快把SQL给忘光了,回到公司的第一个需求就是做报表。
我在之前的文章中(【MySQL入门】之MySQL数据库的锁机制(一),【MySQL入门】之MySQL数据库的锁机制(二))介绍了MySQL的全局锁、表锁和行锁,今天我在来介绍下MySQL的一致性非锁定读、一致性锁定读。再说之前我们先思考个问题,当我们用mysqldump进行逻辑备份时,如果有事务对表进行修改操作,那么我们备份出来的数据是否包含修改后的数据呢?如果mysqldump备份出的数据不包含之后修改的数据,那么他又是怎么保存之前的数据的呢?
1、自动增长字段: 自动增长型字段允许我们在向数据库添加数据时,不考虑主键的取值,记录插入后,数据库系统会自动为其分配一个值,确保绝对不会出现重复。这是我们设置主键的首选:
很多时候我们不确定某个字段的长度,会使用varchar类型,比如某个字段定义为varchar(100),那这100的长度能存多少个中文?
三中key-value存储数据的结构, 哈希的思路很简单, 把值放在数组里, 用一个哈希函数把key换算成一个确定的位置, 然后把value放在数据的这个位置
本来这篇文章我前两个星期就打算写了,提纲都列好了,但是后面我去追《漫长的季节》这部剧去了,这就花了一个周末的时间,再加上后面一些其它的事,导致没来得及写
索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。
MySQL5.7的发行声明中,官方称之为里程碑式的版本,除了运行速度大幅度提升之外,还添加了之前版本没有的功能,如本文所述的原生JSON数据类型功能。 在此版本之前,MySQL所有的JSON数据类型,全部是使用text等文本类型来实现的,数据的处理只能在应用代码级来实现,十分不方便。
数据库作为项目中必不可少且运行速度相对较慢的一环,尤其是在大数据量下保证其更高的性能、更稳定的性能是每个后端程序员必备的技能。MySQL在执行查询语句时,会通过IO扫描磁盘,遍历数据表中的每一条数据,时间复杂度为O(N),当数据量达到百万级别时,查询的速度会极慢,严重影响用户体验。
LLM大语言模型火的一塌糊涂,很多人已经开始频繁的使用GPT等产品来为自己的工作和生活提效。但这一切还都是通用场景,你如何让LLM去服务你自己所在公司的业务领域呢?比如可不可以借助GPT来提高自己公司产品的推荐效率呢?可不可以借助GPT来更好地服务员工日常的问题咨询呢?可不可以借助GPT来搭建公司自己的知识库呢?可不可以借助GPT来改善公司的客户服务体验呢?答案是一切兼有可能。
来这里找志同道合的小伙伴! 背景 各业务系统为使用mysql的业务数据,重复开发出多套数据同步工具,一方面难以管理,另外部分工具性能也偏差。需要一个统一为mysql数据提供同步服务的平台。该平台需支持离线同步,实时订阅,实时同步三大基本功能。 架构 一、功能整合 1、各功能如何实现? 离线同步:可理解为将根据一个sql查询出的数据同步到其它目标存储上; 实时订阅:通过实时解析mysql-binlog,将数据的变动封装成事件存于消息队列,供用户订阅消费; 实时同步:提供一些常见的订阅客户端料现,实时消费
索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。
索引的出现其实是为了提高数据查询的效率,就像书的目录一样,根据目录可以快速定位到内容,类比于索引,根据索引提供指向存储在表的指定列中的数据值的指针,根据指针找到包含该值的行。
存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的
数据库索引好比是一本书前面的目录,能加快数据库的查询速度。索引是对数据库表中一个或多个列(例如,User 表的 '姓名' 列)的值进行排序的结构。如果想按特定用户的姓名来查找他或她,则与在表中搜索所有的行相比,索引有助于更快地获取信息。
知识库服务依赖该数据库,Embedding 形式个性化训练 ChatGPT,必不可少的就是向量数据库 因为 qdrant 向量数据库只支持 Docker 部署,所以需要先安装好 Docker 服务。
https://dev.mysql.com/doc/refman/8.0/en/charset-general.html
因为 InnoDB 在存储数据的时候,更加安全,所以默认的存储引擎是InnoDB(虽然 MyISAM 比 InnoDB 快)
2.你可能会报这个错——Caused by: java.sql.SQLException: Data truncated for column ‘Color’ at row 1 ;
哈喽,我是狗哥。小伙伴都知道我最近换工作了,薪资、工作内容什么的都是我比较满意的。五月底也面试了有 6、7 家公司,应该拿了有 5 个 offer。这段时间也被问了很多面试题,我打算写一个专题分享出来,希望对你们有所帮助~
说一下mysql比较宏观的面试,具体咋写sql的这里就不过多举例了。后面我还会给出一个关于mysql面试优化的试题,这里主要说的索引和B+Tree结构,很少提到我们的集群配置优化方案。
大家好我是北哥,今天整理了MySQL索引相关的知识点及面试常见问题及答案,分享给大家。 以下问题及答案没有特殊说明默认都是针对InnoDB存储引擎,如有不对的地方可以留言讨论哦~ 什么是索引?
这个问题我们可以从两个角度去解答。一个是100G的数据量用MySQL和MongoDB在存读取上有什么区别,另一个是数据本身的结构和你要进行的应用来考虑使用哪种数据库比较方便。
随着闲鱼业务的发展,用户规模达到数亿级,用户维度的数据指标,达到上百个之多。如何从亿级别的数据中,快速筛选出符合期望的用户人群,进行精细化人群运营,是技术需要解决的问题。业界的很多方案常常需要分钟级甚至小时级才能生成查询结果。本文提供了一种解决大数据场景下的高效数据筛选、统计和分析方法,从亿级别数据中,任意组合查询条件,筛选需要的数据,做到毫秒级返回。
开发在使用MySQL中,建立比较大的VARCHAR字段来存储SQL执行的语句或者利用MYSQL 来存储什么VARCHAR(1000) VARCHAR(2000) 之类的事情比比皆是,实际上存储超高的字符的字段在MYSQL中是不提倡的,本来可以是JSON格式的数据,非要变成普通字段存储到MYSQL中,或者使用各种怪异的如下图那样的数据存储方式,有必要这样一根筋的这样处理字符吗?实际上MYSQL8本身支持JSON类型的数据输入,并且很容易处理这些信息
领取专属 10元无门槛券
手把手带您无忧上云