首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ORB 特征

ORB 是 Oriented Fast and Rotated Brief 的简称,可以用来对图像中的关键点快速创建特征向量,这些特征向量可以用来识别图像中的对象。 其中,Fast 和 Brief 分别是特征检测算法和向量创建算法。ORB 首先会从图像中查找特殊区域,称为关键点。关键点即图像中突出的小区域,比如角点,比如它们具有像素值急剧的从浅色变为深色的特征。然后 ORB 会为每个关键点计算相应的特征向量。ORB 算法创建的特征向量只包含 1 和 0,称为二元特征向量。1 和 0 的顺序会根据特定关键点和其周围的像素区域而变化。该向量表示关键点周围的强度模式,因此多个特征向量可以用来识别更大的区域,甚至图像中的特定对象。 ORB 的特点是速度超快,而且在一定程度上不受噪点和图像变换的影响,例如旋转和缩放变换等。

01
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ORB-SLAM3理论讲解与代码精析(第2期)

    自主导航是机器人基础性和关键性技术,是机器人实现其他更高级任务的前提。视觉 SLAM (Simultaneous Localization And Mapping) 利用视觉传感器获取环境图像信息,基于多视图几何算法构建环境地图。视觉SLAM技术广泛应用于无人驾驶、元宇宙、游戏、智能机器人等领域。在无人驾驶方面,一些大厂如腾讯、阿里、百度、华为、小米、商汤等企业投入重金研发,开放大量关于视觉SLAM职位。同时,国内许多独角兽无人驾驶公司如Momenta、AutoX、小马智能和图森未来等举重金招募视觉SLAM人才。随着元宇宙的火爆,国内互联网巨头尤其字节跳动,纷纷将大量资金投入元宇宙,致使视觉SLAM人才进一步稀缺,引发视觉SLAM更高的薪酬与福利。

    02

    Good Feature Matching: Towards Accurate, Robust VO/VSLAM with Low Latency 良好的特征匹配:实现准确、鲁棒的低延迟VO/VSLA

    —在VO或VSLAM系统中保持性能(精确度和鲁棒性)和效率(延迟)的取舍是一个重要的课题。基于特征的系统展现了良好的性能,但由于显式的数据关联有更高的时延;直接和半直接系统低时延,但在一些场景不适用,比基于特征的系统精度低。本论文旨在为基于特征的视觉SLAM提高性能效率,提出了一个主动的地图到图像帧的特征匹配算法:特征匹配和一个需要评分的子矩阵选择联系起来,经过仿真,用Max-logDet矩阵评分有最好的表现。对于实时的适用性,调研了线性时间选择(deterministic selection)和随机加速(randomized acceleration)的组合。本文提出的算法用于了基于特征点的单目和双目SLAM系统。在多个数据集的表现可量化地表明不降低鲁棒性前提下可减少时延。

    01

    SLAM技术分享_it技术分享社区

    同时定位与地图重建(Simultaneous Localization and Mapping, SLAM),是机器人领域中的一项基础的底层技术,其希望机器人能在一个陌生的环境下实现自身的实时定位,同时能够重建出有关于环境的地图。随着近年无人驾驶、增强现实、虚拟现实等应用的兴起,作为实现这些应用的SLAM技术也越发引人注目。SLAM技术主要完成两项任务:自身定位与环境建图,也是让机器知道自己在哪里,已经周围的环境是啥。然而,如果想要精确的实现定位任务就不可避免的需要高精度的地图,而高精度的地图重建是需要以更为精确的自身定位作为基础的。 近年以来,除了传统的激光SLAM解决方案,基于视觉,基于惯性传感器等等的解决方案也在不断变多,整个SLAM领域整体呈现百花齐放的态势。 一. 目前在SLAM领域中的关键问题: 1、数据关联:SLAM技术在未来的发展过程中必然会有一个方向是将SLAM系统中集成多传感器,进行多传感器的融合任务。但是显而易见的是不同的传感器之间具有不同的特征,目前的很多SLAM研究人员都转向了研究多传感器SLAM中的传感器校准(例如自校准或者快速标定等内容),状态估计和后端BA优化。 2、 多机SLAM联合建图:目前在小范围内已有的若干SLAM系统大多都能获得比较好的效果,但是面对大规模,长时间的SLAM问题,如果只采用单机SLAM系统则获得良好的效果,此时通过分散的多机SLAM系统来解决大场景,长时间的SLAM任务将会是一个比较合适的选择,属于比较前沿的SLAM研究方向。 3、 高清晰度、信息量丰富的地图:SLAM技术作为机器人领域的一项底层基础技术,需要根据上层应用程序需要提供一张具有丰富信息的地图,其中比较具有代表性的地图形式就是拓扑地图,语义地图,以及点云地图等等;同时当SLAM系统的面对大场景,长时间的情况时,采用何种方式来存储更新地图也将是一个迫切需要解决的问题。 3、目前SLAM技术仍然面对着更强适应性、鲁棒性、可扩展性的要求。 4、适合的SLAM应用:目前SLAM技术具有广泛的应用场景,但是许多SLAM系统依然处在实验室研究阶段,缺乏合适的工程工具进行封装,需要我们继续完善SLAM的应用生态。 二. SLAM领域中的经典数据集: 1.KITTI数据集(单目视觉 ,双目视觉, velodyne, POS 轨迹)

    05
    领券