导读:MongoDB是一个开源文档数据库,旨在实现卓越的性能、易用性和自动扩展。Pandas是受R数据框架概念启发形成的框架。
本系列教程为量化开发者,提供本地量化金融数据仓库的搭建教程与全套源代码。我们以恒有数(UDATA)金融数据社区为数据源,将金融基础数据落到本地数据库。教程提供全套源代码,包括历史数据下载与增量数据更新,数据更新任务部署与日常监控等操作。
随着数据科学和可视化的日益普及,实时数据可视化成为了许多应用程序中必不可少的一部分。Python语言以其丰富的数据科学生态系统而闻名,其中Bokeh库作为一种功能强大的可视化工具,为实时数据的可视化提供了优秀的支持。本文将介绍如何使用Bokeh库实现实时数据的可视化,并提供相关代码实例。
con = cx_Oracle.connect("pythondemo","welcome","192.168.188.11:1521/std1")
如果你想要使用python操作MySQL数据库,就必须先要安装pymysql库,这个
业务系统通常使用数据库(如MySQL)来存储持久化数据,并使用缓存(如Redis)来提升系统的性能。同时使用数据库和缓存,有一个老生常谈的问题,就是缓存与数据库一致性的问题。
问题: 两个并发操作,一个更新操作,一个查询操作,更新操作删除缓存后,查询操作没有命中缓存,先把旧的数据读出来放到缓存中,然后更新了数据库,于是缓存中的数据还是老的数据。
许多人在更新缓存时,先删除缓存,然后再更新数据库,而后续的操作会把数据再装载入缓存中。
小熊学Java在线网站:https://javaxiaobear.gitee.io/
其次当请求A发起写请求,先更新缓存,于此同时请求B发起读请求,返回数据后,数据库被更新,照成了数据不一致的情况
我们小伙伴们有没有考虑到缓存更新的问题,小伙伴们肯定会说肯定用过啊,有数据更新时,把缓存清空掉就行了啊,下一次访问的时候服务就会把新值设置到缓存中了。这样不就行了吗?对的,在一般项目中,这样的使用就够了。那老顾带着大家看看在高并发场景下,会有什么问题?
由于缓存的高并发和高性能已经在各种项目中被广泛使用,在读取缓存这方面基本都是一致的,大概都是按照下图的流程进行操作:
通常,我们会使用缓存用于缓冲对 DB 的冲击,如果缓存宕机,所有请求将直接打在 DB,造成 DB 宕机——从而导致整个系统宕机。
看到好些人在写更新缓存数据代码时,先删除缓存,然后再更新数据库,而后续的操作会把数据再装载的缓存中。然而,这个是逻辑是错误的。试想,两个并发操作,一个是更新操作,另一个是查询操作,更新操作删除缓存后,查询操作没有命中缓存,先把老数据读出来后放到缓存中,然后更新操作更新了数据库。于是,在缓存中的数据还是老的数据,导致缓存中的数据是脏的,而且还一直这样脏下去了。 我不知道为什么这么多人用的都是这个逻辑,当我在微博上发了这个贴以后,我发现好些人给了好多非常复杂和诡异的方案,所以,我想写这篇文章说一下几个缓存更新的
看到好些人在写更新缓存数据代码时,先删除缓存,然后再更新数据库,而后续的操作会把数据再装载的缓存中。然而,这个是逻辑是错误的。试想,两个并发操作,一个是更新操作,另一个是查询操作,更新操作删除缓存后,查询操作没有命中缓存,先把老数据读出来后放到缓存中,然后更新操作更新了数据库。于是,在缓存中的数据还是老的数据,导致缓存中的数据是脏的,而且还一直这样脏下去了。
面试redis和DB数据一致性问题,也是经常被问到的,只要你建立写了redis,如果面试官想问一些场景问题,都会扯到数据一致性问题,今天我们就解读一下这个问题,按照以下思路解读
BASE理论接着了解一下,强一致性保证不了,那只好委屈求全,尽量保证最终一致性呗。
本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
目前随着缓存架构方案越来越成熟化,通常做法是引入「缓存」来提高读性能,架构模型就变成了这样:
数据库跟缓存,或者用Mysql和Redis来代替,想必每个CRUD boy都不会陌生。本文要聊的也是一个经典问题,就是以怎样的方式去操作数据库和缓存比较合理。
看到好些人在写更新缓存数据代码时,先删除缓存,然后再更新数据库,而后续的操作会把数据再装载到缓存中。然而,这个是逻辑是错误的。
在使用缓存时,我们必须要考虑的是缓存与数据库的双写一致性,是先删缓存还是先更新数据库?是需要强一致性还是最终一致性?延迟双删策略真的就万无一失了吗?虽然网上已经有很多文章分析了,但都比较零散,所以本篇根据自己的经验及网上的文章做了个归纳整理。
要想同时满足上面三条,可以采用读请求和写请求串行化,串到一个内存队列里去,这样就可以保证一定不会出现不一致的情况。但是,串行化之后,就会导致系统的吞吐量会大幅度的降低,要用比正常情况下多几倍的机器去支撑线上请求。
实际开发中,Redis 和 MySQL 的更新策略用的是 Cache Aside,另外两种策略主要应用在计算机系统里。
在PHP中,您可以使用UPDATE语句来更新数据库。以下是一个MySQLi更新示例:
为加速系统性能一般都会引入缓存机制,比如 Redis。这种情况下当用户读数据时一般会按照如下流程:
作者:sinxu,腾讯 CSIG 后台开发工程师 1. 什么是数据的一致性 “数据一致”一般指的是:缓存中有数据,缓存的数据值 = 数据库中的值。 但根据缓存中是有数据为依据,则”一致“可以包含两种情况: 缓存中有数据,缓存的数据值 = 数据库中的值(需均为最新值,本文将“旧值的一致”归类为“不一致状态”) 缓存中本没有数据,数据库中的值 = 最新值(有请求查询数据库时,会将数据写入缓存,则变为上面的“一致”状态) ”数据不一致“:缓存的数据值 ≠ 数据库中的值;缓存或者数据库中存在旧值,导致其他线程
1.了解一致性情况; 2.反推不一致的情况; 3.探究单线程中的不一致的情况; 4.探究多线程中的不一致的情况; 5.拟定数据一致性策略; 6.补充细节
导语 | 本文的主要思路是首先带大家认识了解MySQL和Redis的数据一致性情况,然后进行反推不一致的情况,从而进行探究单线程中的不一致的情况。同时探究多线程中的不一致的情况,拟定数据一致性策略。 一、什么是数据的一致性 “数据一致”一般指的是:缓存中有数据,缓存的数据值=数据库中的值。但根据缓存中是有数据为依据,则“一致”可以包含两种情况: 缓存中有数据,缓存的数据值=数据库中的值 缓存中本没有数据,数据库中的值=最新值(有请求查询数据库时,会将数据写入缓存,则变为上面的“一致”状态) “数据不一
当我们在做数据库与缓存数据同步时,究竟更新缓存,还是删除缓存,究竟是先操作数据库,还是先操作缓存?本文带大家深度分析数据库与缓存的双写问题,以供大家参考。
在秒杀实际的业务中,一定有很多需要做缓存的场景,比如售卖的商品,包括名称,详情等。访问量很大的数据,可以算是“热点”数据了,尤其是一些读取量远大于写入量的数据,更应该被缓存,而不应该让请求打到数据库上。
首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用。在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作:
更新缓存的步骤特别简单,共两步:更新数据库和更新缓存。但这简单的两步中需要考虑很多问题。
针对不同的业务场景,实际选用的缓存的读写策略也不同。为方便讨论,这里假定更新数据库、缓存都成功。
保证缓存和数据库数据一致性是一个复杂的问题,它涉及到缓存策略、数据更新机制、系统架构等多个方面。下面我将介绍一些常见的策略来确保缓存和数据库之间的数据一致性。
在上一篇文章中[常见面试题之缓存雪崩、缓存穿透、缓存击穿],忘记讲了一个概念——缓存预热,所以在这篇文章补充一下,开一个好头,预热嘛~~~。
◆ 如何更新缓存 更新缓存的步骤特别简单,共两步:更新数据库和更新缓存。但这简单的两步中需要考虑很多问题。 1)先更新数据库还是先更新缓存?更新缓存时先删除还是直接更新? 2)假设第一步成功了,第二步失败了怎么办? 3)假设两个线程同时更新同一个数据,A线程先完成第一步,B线程先完成第二步怎么办? 其中,第1个问题就存在5种组合方案,下面逐一进行介绍(以上3个问题因为紧密关联,无法单独考虑,下面就一起说明)。 ◆ 组合1:先更新缓存,再更新数据库 对于这个组合,会遇到这种情况:假设第二步更新数据库失败了,要
cursor.execute 与 cursor.executemany有许多不同的地方
“数据一致”一般指的是:缓存中有数据,缓存的数据值 = 数据库中的值。一致性又分为几种程度:
如果你的业务处于起步阶段,流量非常小,那无论是读请求还是写请求,直接操作数据库即可,这时你的架构模型是这样的:
随着数据越来越大, QPS越来越高, 各公司都会利用分布式缓存, 缓解数据库压力.
缓存已经成为了几乎所有应用系统的必备要素。使用缓存可以有效提高系统的读性能,相比于直接读取数据库,吞吐量有了很大的提高。但是,在实际生产环境中,很难保证缓存与数据库中数据的完全一致。程序应采取某种策略,尽可能地保证缓存中的数据是最新的,并且可以检测到缓存中数据失效,并提供相应的解决方案。
领取专属 10元无门槛券
手把手带您无忧上云