首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

高效的10个Pandas函数,你都用过吗?

以前面的df为例,group列有A、B、C三组,year列有多个年份。...Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。...否则替换为other other:替换的特殊值 inplace:inplace为真则在原数据上操作,为False则在原数据的copy上操作 axis:行或列 将df中列value_1里小于5的值替换为0...periods=1, fill_method=‘pad’, limit=None, freq=None, **kwargs) 参数作用: periods:间隔区间,即步长 fill_method:处理空值的方法...Melt Melt用于将宽表变成窄表,是 pivot透视逆转操作函数,将列名转换为列数据(columns name → column values),重构DataFrame。

4.2K20

Pandas库

如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...大小写转换: 使用str.lower ()将所有字符转换为小写。 使用str.upper ()将所有字符转换为大写。...例如,可以将日数据转换为月度或年度数据。使用resample方法可以方便地实现这一操作。...数据重塑(Data Reshaping) : 数据重塑是将数据从一种格式转换为另一种格式的过程,常见的方法有pivot和melt。这些方法可以用于将宽表数据转换为长表数据,或者反之。...例如,计算每个学生的平均成绩: average_score = df['成绩'].mean() print(average_score) 可以通过设置axis参数来指定是按列(0)还是按行(

8410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas速查卡-Python数据科学

    =1) 删除包含空值的所有列 df.dropna(axis=1,thresh=n) 删除所有小于n个非空值的行 df.fillna(x) 用x替换所有空值 s.fillna(s.mean()) 将所有空值替换为均值...(均值可以用统计部分中的几乎任何函数替换) s.astype(float) 将数组的数据类型转换为float s.replace(1,'one') 将所有等于1的值替换为'one' s.replace(...[1,3],['one','three']) 将所有1替换为'one',将3替换为'three' df.rename(columns=lambda x: x + 1) 批量重命名列 df.rename(...按升序对值排序 df.sort_values(col2,ascending=False) 将col2按降序对值排序 df.sort_values([col1,ascending=[True,False]...) 将col1按升序排序,然后按降序排序col2 df.groupby(col) 从一列返回一组对象的值 df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1

    9.2K80

    《Python for Excel》读书笔记连载12:使用pandas进行数据分析之理解数据

    本节首先介绍pandas的工作原理,然后介绍将数据聚合到子集的两种方法:groupby方法和pivot_table函数。...处理空单元格的方式一致,因此在包含空单元格的区域内使用Excel的AVERAGE公式将获得与应用于具有相同数字和NaN值(而不是空单元格)的系列的mean方法相同的结果。...例如,下面是如何获得每组最大值和最小值之间的差值: df.groupby(["continent"]).agg(lambdax: x.max() - x.min()) 在Excel中获取每个组的统计信息的常用方法是使用透视表...并将其转换为透视表的列标题,从而聚合来自另一列的值。...如果要反过来将列标题转换为单个列的值,使用melt。从这个意义上说,melt与pivot_table函数相反: 这里,提供了透视表作为输入,但使用iloc来去除所有的汇总行和列。

    4.3K30

    几个高效Pandas函数

    Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。...否则替换为other other:替换的特殊值 inplace:inplace为真则在原数据上操作,为False则在原数据的copy上操作 axis:行或列 将df中列value_1里小于5的值替换为0...periods=1, fill_method=‘pad’, limit=None, freq=None, **kwargs) 参数作用: periods:间隔区间,即步长 fill_method:处理空值的方法...Melt Melt用于将宽表变成窄表,是 pivot透视逆转操作函数,将列名转换为列数据(columns name → column values),重构DataFrame。...用法: # 直接将df或者series推断为合适的数据类型 DataFrame.infer_objects() pandas支持多种数据类型,其中之一是object类型。

    1.6K60

    python pyecharts数据可视化 折线图 箱形图

    ), opts.MarkPointItem(type_="min", name="最小值"), opts.MarkPointItem(type_="average", name="平均值...) line.render('2019成都AQI指数走势图(按日统计).html') 运行效果如下: [cuv15r5rm5.gif] import pandas as pd import pyecharts.options...), opts.MarkPointItem(type_="min", name="最小值"), opts.MarkPointItem(type_="average", name="平均值...箱线图的绘制方法是:先找出一组数据的上边缘、下边缘、中位数和两个四分位数;然后, 连接两个四分位数画出箱体;再将上边缘和下边缘与箱体相连接,中位数在箱体中间。...[gm4ivdtllx.png] 利用pyecharts绘制箱线图需要用 prepare_data() 方法将传入的列表中的数据转换为的 min, Q1, median (or Q2), Q3, max

    2.9K30

    9个value_counts()的小技巧,提高Pandas 数据分析效率

    生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。 在本文中,我们将探讨 Pandas value_counts() 的不同用例。您将学习如何使用它来处理以下常见任务。...默认参数 按升序对结果进行排序 按字母顺序排列结果 结果中包含空值 以百分比计数显示结果 将连续数据分入离散区间 分组并调用 value_counts() 将结果系列转换为 DataFrame 应用于DataFrame...groupby() 允许我们将数据分成不同的组来执行计算以进行更好的分析。...一个常见的用例是按某个列分组,然后获取另一列的唯一值的计数。例如,让我们按“Embarked”列分组并获取不同“Sex”值的计数。...同样,我们可以调用 to_frame() 将结果转换为 DataFrame >>> df.value_counts().to_frame() 总结 在本文中,我们探讨了 Pandas value_counts

    6.7K61

    9个value_counts()的小技巧,提高Pandas 数据分析效率

    生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。 在本文中,我们将探讨 Pandas value_counts() 的不同用例。您将学习如何使用它来处理以下常见任务。...默认参数 按升序对结果进行排序 按字母顺序排列结果 结果中包含空值 以百分比计数显示结果 将连续数据分入离散区间 分组并调用 value_counts() 将结果系列转换为 DataFrame 应用于DataFrame...groupby() 允许我们将数据分成不同的组来执行计算以进行更好的分析。...一个常见的用例是按某个列分组,然后获取另一列的唯一值的计数。例如,让我们按“Embarked”列分组并获取不同“Sex”值的计数。  ...同样,我们可以调用 to_frame() 将结果转换为 DataFrame  >>> df.value_counts().to_frame() 总结 在本文中,我们探讨了 Pandas value_counts

    3K20

    9个value_counts()的小技巧,提高Pandas 数据分析效率

    生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。 在本文中,我们将探讨 Pandas value_counts() 的不同用例。您将学习如何使用它来处理以下常见任务。...1、默认参数 2、按升序对结果进行排序 3、按字母顺序排列结果 4、结果中包含空值 5、 以百分比计数显示结果 6、将连续数据分入离散区间 7、分组并调用 value_counts() 8、将结果系列转换为...groupby() 允许我们将数据分成不同的组来执行计算以进行更好的分析。...一个常见的用例是按某个列分组,然后获取另一列的唯一值的计数。例如,让我们按“Embarked”列分组并获取不同“Sex”值的计数。...同样,我们可以调用 to_frame() 将结果转换为 DataFrame >>> df.value_counts().to_frame() 总结 在本文中,我们探讨了 Pandas value_counts

    2.5K20

    Pandas中你一定要掌握的时间序列相关高级功能 ⛵

    数据科学工具库速查表 | Pandas 速查表图解数据分析:从入门到精通系列教程 时间序列时间序列是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。...图片 Pandas 时间序列处理我们要了解的第一件事是如何在 Pandas 中创建一组日期。我们可以使用date_range()创建任意数量的日期,函数需要你提供起始时间、时间长度和时间间隔。...图片我们也可以按每周销售额绘制汇总数据。...(100).sales.mean().plot(legend=True, label='100 day average', linewidth=4)图片 总结Pandas在时间序列处理和分析中也非常有效...,ShowMeAI在本篇内容中介绍的3个核心函数,是最常用的时间序列分析功能:resample:将数据从每日频率转换为其他时间频率。

    1.8K63

    8个Python高效数据分析的技巧

    具体来说,map通过对列表中每个元素执行某种操作并将其转换为新列表。 在本例中,它遍历每个元素并乘以2,构成新列表。 请注意,list()函数只是将输出转换为列表类型。...---- 在Pandas中,删除一列或在NumPy矩阵中求和值时,可能会遇到Axis。...回想一下Pandas中的shape 1df.shape 2(# of Rows, # of Columns) 从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数...Merge将多个DataFrame合并指定主键(Key)相同的行。 ? Join,和Merge一样,合并了两个DataFrame。 但它不按某个指定的主键合并,而是根据相同的列名或行名合并。 ?...下面是几个例子:非常智能地将数据按照“Manager”分了组 1pd.pivot_table(df, index=["Manager", "Rep"]) ? 或者也可以筛选属性值 ?

    2.1K20

    8 个 Python 高效数据分析的技巧

    具体来说,map通过对列表中每个元素执行某种操作并将其转换为新列表。在本例中,它遍历每个元素并乘以2,构成新列表。请注意,list()函数只是将输出转换为列表类型。...在Pandas中,删除一列或在NumPy矩阵中求和值时,可能会遇到Axis。...回想一下Pandas中的shape df.shape (# of Rows, # of Columns) 从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数...Merge将多个DataFrame合并指定主键(Key)相同的行。 ? Join,和Merge一样,合并了两个DataFrame。但它不按某个指定的主键合并,而是根据相同的列名或行名合并。 ?...下面是几个例子:非常智能地将数据按照“Manager”分了组 pd.pivot_table(df, index=["Manager", "Rep"]) ?

    2.7K20

    数据分析从零开始实战 | 基础篇(四)

    我的理解 字符串或编译的正则表达式,可选 包含与此正则表达式或字符串匹配的文本的一组表将返回。 除非HTML非常简单,否则您可能需要在此处传递一个非空字符串。...默认值将返回页面上包含的所有标签包含的表格。 该值将转换为正则表达式,以便Beautiful Soup和LXML之间一致。...我的理解 简单点说,就是替换NA(空值)的值。如果是直接给值,表示全部替换; 如果是字典: {列名:替换值} 表示替换掉该列包含的所有空值。...pad / ffill:按列检索,将最后一次不为空的值赋给下一个空值。 backfill / bfill:按列检索,将下一个不为空的值赋给该空值。...我的理解 其实很简单,就是按列搜索空值,然后limit的值表示最大的连续填充空值个数。 比如:limit=2,表示一列中从上到下搜索,只替换前两个空值,后面都不替换。

    1.3K20

    这 8 个 Python 技巧让你的数据分析提升数倍!

    具体来说,map通过对列表中每个元素执行某种操作并将其转换为新列表。在本例中,它遍历每个元素并乘以2,构成新列表。请注意,list()函数只是将输出转换为列表类型。...---- ---- 在Pandas中,删除一列或在NumPy矩阵中求和值时,可能会遇到Axis。...回想一下Pandas中的shape df.shape (# of Rows, # of Columns) 从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数...Merge将多个DataFrame合并指定主键(Key)相同的行。 ? Join,和Merge一样,合并了两个DataFrame。但它不按某个指定的主键合并,而是根据相同的列名或行名合并。 ?...下面是几个例子:非常智能地将数据按照“Manager”分了组 pd.pivot_table(df, index=["Manager", "Rep"]) ?

    2K10

    在Pandas中通过时间频率来汇总数据的三种常用方法

    Pandas提供了一种方便的方法,可以按不同的基于时间的间隔(如分钟、小时、天、周、月、季度或年)对时间序列数据进行分组。比如进行数据分析时,我们需要将日数据转换为月数据,年数据等。...例如将每日数据重新采样为每月数据。Pandas中的resample方法可用于基于时间间隔对数据进行分组。...'列转换为日期类型,然后将其设置为DataFrame的索引。...Pandas 中的 Grouper 函数提供了一种按不同时间间隔(例如分钟、小时、天、周、月、季度或年)对时间序列数据进行分组的便捷方法。...在Pandas中,使用dt访问器从DataFrame中的date和time对象中提取属性,然后使用groupby方法将数据分组为间隔。

    6910

    pandas与SQL的查询语句对比

    在pandas的官方文档中对常用的SQL查询语句与pandas的查询语句进行了对比,这里以 @猴子 社群里面的朝阳医院数据为例进行演示,顺便求第四关门票,整体数据结构如下: import pandas...False 4 False 5 False 6 False 7 False 8 False 9 False 10 False 将表达式传入...df之后会返回值为True的行 s = df['销售数量'] == 3 df[s].head(5) 购药时间 社保卡号 商品编码 商品名称 销售数量 应收金额 实收金额...GROUP BY 在Pandas中可以使用groupby()函数实现类似于SQL中的GROUP BY功能,groupby()能将数据集按某一条件分为多个组,然后对其进行某种函数运算(通常是聚合运算)。...(5) 商品名称 **盐酸阿罗洛尔片(阿尔马尔) 34 **阿替洛尔片 8 D厄贝沙坦氢氯噻嗪片(倍悦) 1 D替格瑞洛片 1 D盐酸贝尼地平片

    1.1K41

    灰太狼的数据世界(二)

    今天我们就主要来聊聊Series~~~~ Pandas Series Pandas里面的Serise是一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引...仅由一组数据也可产生简单的Series对象。(注意:Series中的索引值是可以重复的) 我们可以看一下下面这一张图: ? 这样的一列就是一个Series。...3 empty 如果系列为空,则返回True。 4 ndim 返回底层数据的维数,默认定义:1。 5 size 返回基础数据中的元素数。 6 values 将系列作为ndarray返回。...(t) print('average=', t.mean()) ?...5、标准差函数STD 说的简单一点,他就是和方差一样的,也是考量一组数据的稳定性,具体值就是方差开平方。也就是把上面那个表达式的平方去掉即可。

    67120

    Pandas全景透视:解锁数据科学的黄金钥匙

    底层使用C语言:Pandas的许多内部操作都是用Cython或C语言编写的,Cython是一种Python的超集,它允许将Python代码转换为C语言代码,从而提高执行效率。...定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值; backfill / bfill表示用后面行/列的值,填充当前行/列的空值。axis:轴。...0或’index’,表示按行删除;1或’columns’,表示按列删除。inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。...Series 的数据类型转换为指定的数据类型举个例子import pandas as pd# 创建一个 Seriess = pd.Series([1, 2, 3, 4])# 使用 astype() 方法将...中的数值分成等宽的n份(即每一组内的最大值与最小值之差约相等);如果是标量序列,序列中的数值表示用来分档的分界值如果是间隔索引,“ bins”的间隔索引必须不重叠举个例子import pandas as

    11710
    领券