如果使用均方差作为损失函数 所以,如果当前模型的输出接近0或者1时,σ′(z)就会非常小,接近0,使得求得的梯度很小,损失函数收敛的很慢。...如果使用交叉熵作为损失函数 原文链接:为什么LR模型损失函数使用交叉熵不用均方差? 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。...如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...或者 from keras import losses model.compile(loss=losses.mean_squared_error, optimizer='sgd') 你可以传递一个现有的损失函数名...,或者一个TensorFlow/Theano符号函数。...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...,你的目标值应该是分类格式 (即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。
对于在逻辑回归中遇到的对数损失函数立马会让很多同学陷入蒙圈的状态~ 这几天,就有一位可爱的同学问到:逻辑回归中,对数损失函数是什么?如何深层次理解其中的原理?...损失函数的理解 通常,对数损失函数的含义可以从两个方面来理解: 1....而当预测值与实际类别偏离较大时,对数损失函数的值会变得非常大。 换句话说,对数损失函数是一种衡量模型预测准确性的指标。它可以直观地告诉我们模型在分类任务中的表现如何。...在每次迭代中,计算当前模型参数下的损失函数值,并更新参数以使损失函数减小。...') plt.show() 最后,咱们利用 Matplotlib 库绘制了损失函数随着迭代次数的变化曲线图,用于可视化损失函数的收敛情况,以及训练过程中损失的变化。
上一篇介绍了回归任务的常用损失函数,这一次介绍分类任务的常用损失函数 深度学习中的损失函数 一.分类任务 与回归任务不同,分类任务是指标签信息是一个离散值,其表示的是样本对应的类别,一般使用...one-hot的中文释义为独热,热 的位置对应于向量中的1,所以容易理解独热的意思是指向量中只有一个位置为1,而其他位置都为0。...1.交叉熵损失 作为信息论基本概念之一,熵被用来衡量一个系统内信息的复杂度。...softmax变换为0~1概率值 pred = tf.nn.softmax(pred) # 计算预测值的以2为底的对数值 pred = tf.math.log...,对于已经能正确分类的样本即预测标签已经是正负1的样本不做惩罚,其loss为0,对于介于-1~1的预测标签才计算损失。
1、经典损失函数:分类问题和回归问题是监督学习的两大种类。这一节将分别介绍分类问题和回归问题中使用到的经典损失函数。分类问题希望解决的是将不同的样本分到事先定义到的经典损失函数。...交叉熵刻画了两个概率分布之间的距离,它是分类问题中试用版比较广的一种损失函数。交叉熵是一个信息论中的概念,它原本是用来估计平均编码长度的。...这样通过tf.clip_by_value函数就可以保证在进行log运算时,不会出现log0这样的错误或者大于1的概率。第二个运算是tf.log函数,这个函数完成了对张量所有元素依次求对数的功能。...2、自定义损失函数:tensorflow不仅支持经典的损失函数。还可以优化任意的自定义损失函数。下面介绍如何通过自定义损失函数的方法,使得神经网络优化的结果更加接近实际问题的需求。...为了最大化预期利润,需要将损失函数和利润直接联系起来。注意损失函数定义的是损失,所以要将利润最大化,定义的损失函数应该和客户啊成本或者代价。
总第121篇 前言 在机器学习中,同一个数据集可能训练出多个模型即多个函数(如下图所示,同样的数据集训练出三种不同的函数),那么我们在众多函数中该选择哪个函数呢?...2.平方损失函数 平方损失就是线性回归中的残差平方和,常用在回归模型中,表示预测值(回归值)与实际值之间的距离的平方和。...3.绝对损失函数 绝对损失与平方损失类似,也主要用在回归模型中,表示预测值与实际值之间的距离。...5.对数损失函数 对数损失函数主要用在逻辑回归中,在逻辑回归模型中其实就是预测某个值分别属于正负样本的概率,而且我们希望预测为正样本的概率越高越好。...6.Hinge损失函数 Hinge损失主要用在SVM算法中,具体公式如下: 形状比较像合页,又称合页损失函数 Yi表示样本真实分类,Yi=-1表示负样本,Yi=1表示正样本,Yi~表示预测的点到分离超平面的距离
在机器学习中,损失函数是代价函数的一部分,而代价函数是目标函数的一种类型。在应用中,损失函数通常作为学习准则与优化问题相联系,即通过最小化损失函数求解和评估模型。...Cross Entropy Loss 损失函数 物理学上的熵表示一个热力学系统的无序程度。为了解决对信息的量化度量问题,香农在1948年提出了“信息熵”的概念,使用对数函数表示对不确定性的测量。...Cross Entropy loss损失函数,或负对数损失,衡量输出为0到1之间的概率值的分类模型的性能,常用于二分类和多分类问题中。交叉熵损失随着预测的概率值远离实际标签而增加。...Hinge Loss 损失函数 Hinge loss损失函数通常适用于二分类的场景中,可以用来解决间隔最大化的问题,常应用于著名的SVM算法中。...Huber Loss 也是回归中使用的一种损失函数,它对数据中的异常值不如误差平方损失那么敏感。它具有对异常点不敏感和极小可微的特点,使得损失函数具有良好的性质。
绝对值损失函数 绝对值损失函数是计算预测值与目标值的差的绝对值: ? 3. log对数损失函数 log对数损失函数的标准形式如下: ?...(3)逻辑回归的损失函数就是log对数损失函数。 4. 平方损失函数 平方损失函数标准形式如下: ? 特点: (1)经常应用与回归问题 5....指数损失函数(exponential loss) 指数损失函数的标准形式如下: ? 特点: (1)对离群点、噪声非常敏感。经常用在AdaBoost算法中。 6....交叉熵损失函数 (Cross-entropy loss function) 交叉熵损失函数的标准形式如下: ? 注意公式中 ? 表示样本, ? 表示实际的标签, ?...表示预测的输出, ? 表示样本总数量。 特点: (1)本质上也是一种对数似然函数,可用于二分类和多分类任务中。
前言 本篇博客的目的是根据业务目标,为大家提供关于在构建神经网络时,如何根据需求选择合适的最终层激活函数和损失函数的指导和建议。...最终激活函数 Sigmoid——这将产生一个介于0和1之间的值,我们可以推断出模型对示例属于该类别的信心程度。 损失函数 二元交叉熵——交叉熵量化了两个概率分布之间的差异。...最终激活函数 Softmax——这将为每个输出产生介于0和1之间的值,这些值的总和为1。 所以这可以被推断为概率分布。 损失函数 交叉熵——交叉熵量化了两个概率分布之间的差异。...最终激活函数 Sigmoid——这将产生一个介于0和1之间的值,我们可以推断出模型对于某个实例属于该类别的信心程度。 损失函数 二元交叉熵——交叉熵量化了两个概率分布之间的差异。...总结 以下表格总结了上述信息,以便您能够快速找到适用于您用例的最终层激活函数和损失函数。 参考: 人工智能学习指南
影响模型行为:某些损失函数可能会影响模型的行为,例如对数据异常值更加稳健或优先处理特定类型的错误。 让我们在后面的部分中探讨特定损失函数的作用,并建立对损失函数的详细理解。 什么是损失函数?...损失函数的类型 机器学习中的损失函数可以根据其适用的机器学习任务进行分类。...二元交叉熵损失(或对数损失)是一种量化指标,用来衡量机器学习算法的预测与实际目标预测之间的差异。这种差异是通过计算机器学习算法对总数据样本数所作预测概率的对数值的负和来计算的。...二元交叉熵损失(也称为对数损失)的数学方程为: 何时使用二元交叉熵损失/对数损失 上面的等式特别适用于机器学习算法在两个类别之间进行分类的场景。这是一个二元分类场景。...模型预测出现正类的概率的对数 2. 1的对数减去负类的预测概率: 二元交叉熵损失函数(BCE)会对不准确的预测进行惩罚,特别是对于与正类差异显著的预测,或者说,对于熵的量化值较高的预测。
一般来说,我们在进行机器学习任务时,使用的每一个算法都有一个目标函数,算法便是对这个目标函数进行优化,特别是在分类或者回归任务中,便是使用损失函数(Loss Function)作为其目标函数...损失函数是用来评价模型的预测值Y^=f(X)与真实值Y的不一致程度,它是一个非负实值函数。通常使用L(Y,f(x))来表示,损失函数越小,模型的性能就越好。...那么总的损失函数为:(X,Y)=(xi,yi) L=∑i=1Nℓ(yi,yi^) 常见的损失函数ℓ(yi,yi^)有一下几种: Zero-one Loss Zero-one Loss:即0-1损失,它是一种较为简单的损失函数...Hinge Loss Hinge,损失可以用来解决间隔最大化问题,如在SVM中解决几何间隔最大化问题,其定义如下: ?...因此log类型的损失函数也是一种常见的损失函数,如在LR(Logistic Regression, 逻辑回归)中使用交叉熵(Cross Entropy)作为其损失函数。即: ? 规定: ?
概述 在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式: J...,主要的形式有: 0-1损失 Log损失 Hinge损失 指数损失 感知损失 2. 0-1损失函数 在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值...0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。 3. Log损失函数 3.1....Log损失 Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下: l...Log损失与0-1损失的关系可见下图。 4. Hinge损失函数 4.1.
一、分类算法中的损失函数 在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式: J(w)=∑iL(mi(w))+λR(w) J\left ( \mathbf{w} \right...,主要的形式有: 0-1损失 Log损失 Hinge损失 指数损失 感知损失 1、0-1损失函数 在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值...0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。...2、Log损失函数 2.1、Log损失 Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下: log(1+exp(−m)) log\left ( 1+exp\left ( -m \right...3、Hinge损失函数 3.1、Hinge损失 Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下: max(0,1−m) max\left ( 0,1-m \right )
前言:损失函数是机器学习里最基础也是最为关键的一个要素,通过对损失函数的定义、优化,就可以衍生到我们现在常用的LR等算法中 本文是根据个人自己看的《统计学方法》《斯坦福机器学习课程》及日常工作对其进行的一些总结...:10 从损失函数求和中,就能评估出公式1能够更好得预测门店销售。...f(X)| (4) 对数损失函数(logarithmicloss function)或对数似然损失函数(log-likelihood loss function) L(Y,P(Y|X))=?...logP(Y|X) 损失函数越小,模型就越好。 总结: 损失函数可以很好得反映模型与实际数据差距的工具,理解损失函数能够更好得对后续优化工具(梯度下降等)进行分析与理解。...很多时候遇到复杂的问题,其实最难的一关是如何写出损失函数。这个以后举例 下一篇,我们来说一下如何用梯度下降法对每个公式中的系数进行调整
一、分类算法中的损失函数 image.png 1、0-1损失函数 image.png 2、Log损失函数 2.1、Log损失 image.png 2.2、Logistic回归算法的损失函数 image.png...2.3、两者的等价 image.png 3、Hinge损失函数 3.1、Hinge损失 Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下: max(0,1−m) 运用Hinge...3.2、SVM的损失函数 image.png 3.3、两者的等价 image.png 4、指数损失 4.1、指数损失 指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下: exp(−m) 运用指数损失的典型分类器是...5.2、感知机算法的损失函数 感知机算法只需要对每个样本判断其是否分类正确,只记录分类错误的样本,其损失函数为: image.png 5.3、两者的等价 image.png image.png Hinge...损失对于判定边界附近的点的惩罚力度较高,而感知损失只要样本的类别判定正确即可,而不需要其离判定边界的距离,这样的变化使得其比Hinge损失简单,但是泛化能力没有Hinge损失强。
点关注,不迷路,定期更新干货算法笔记~ 表示学习的目的是将原始数据转换成更好的表达,以提升下游任务的效果。在表示学习中,损失函数的设计一直是被研究的热点。...这篇文章总结了表示学习中的7大损失函数的发展历程,以及它们演进过程中的设计思路,主要包括contrastive loss、triplet loss、n-pair loss、infoNce loss、focal...损失函数可以表示为: Contrastive Loss是后面很多表示学习损失函数的基础,通过这种对比的方式,让模型生成的表示满足相似样本距离近,不同样本距离远的条件,实现更高质量的表示生成。...InfoNCE loss可以表示为如下形式,其中r代表temperature,采用内积的形式度量两个样本生成向量的距离,InfoNCE loss也是近两年比较火的对比学习中最常用的损失函数之一: 相比...总结 损失函数是影响表示学习效果的关键因素之一,本文介绍了表示学习中7大损失函数的发展历程,核心思路都是通过对比的方式约束模型生成的表示满足相似样本距离近,不同样本距离远的原则。 END
问题是这样的,有时候spark ml pipeline中的函数不够用,或者是我们自己定义的一些数据预处理的函数,这时候应该怎么扩展呢?...扩展后保持和pipeline相同的节奏,可以保存加载然后transform。...如何在pyspark ml管道中添加自己的函数作为custom stage?...:return: 修改完后的数据 列名 填充的值 ''' # fill_value = df.select( min(col_) ).collect()...:return: 修改完后的数据 列名 填充的值 ''' # fill_value = df.select( mean(col_) ).collect(
对于不平衡的训练集非常有效。 在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。...必须是一个长度为 “nbatch” 的 的 Tensor 6 BCEWithLogitsLoss BCEWithLogitsLoss损失函数把 Sigmoid 层集成到了 BCELoss 类中....') 对于 mini-batch(小批量) 中每个实例的损失函数如下: 参数: margin:默认值0 8 HingeEmbeddingLoss torch.nn.HingeEmbeddingLoss...(margin=1.0, reduction='mean') 对于 mini-batch(小批量) 中每个实例的损失函数如下: 参数: margin:默认值1 9 多标签分类损失 MultiLabelMarginLoss...它计算每个像素的负对数似然损失。
对于不平衡的训练集非常有效。 在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。...必须是一个长度为 “nbatch” 的 的 Tensor 6 BCEWithLogitsLoss BCEWithLogitsLoss损失函数把 Sigmoid 层集成到了 BCELoss 类中....') 对于 mini-batch(小批量) 中每个实例的损失函数如下: 参数: margin:默认值0 8 HingeEmbeddingLoss torch.nn.HingeEmbeddingLoss...(margin=1.0, reduction='mean') 对于 mini-batch(小批量) 中每个实例的损失函数如下: 参数: margin:默认值1 9 多标签分类损失 MultiLabelMarginLoss...17 负对数似然损失 NLLLoss 负对数似然损失.
前言:损失函数是机器学习里最基础也是最为关键的一个要素,通过对损失函数的定义、优化,就可以衍生到我们现在常用的机器学习等算法中 损失函数的作用:衡量模型模型预测的好坏。...于是乎我们就会想到这个方程的损失函数可以用绝对损失函数表示: 公式Y-实际Y的绝对值,数学表达式: ?...,学习损失函数的意义 公式2 Y=8+4X 绝对损失函数求和:11 平方损失函数求和:27 公式1 Y=10+3X 绝对损失函数求和:6 平方损失函数求和:10 从损失函数求和中,就能评估出公式1能够更好得预测门店销售...function) (4) 对数损失函数(logarithmicloss function)或对数似然损失函数(log-likelihood loss function) 损失函数越小,模型就越好。...总结: 损失函数可以很好得反映模型与实际数据差距的工具,理解损失函数能够更好得对后续优化工具(梯度下降等)进行分析与理解。很多时候遇到复杂的问题,其实最难的一关是如何写出损失函数。
领取专属 10元无门槛券
手把手带您无忧上云