首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    余弦相似度(Cosine Similarity)

    原理 余弦相似度是一种衡量两个向量之间相似性的方法,它基于向量之间的夹角余弦值来计算。在文本挖掘、推荐系统等领域,余弦相似度被广泛应用来度量文档、用户偏好等对象之间的相似性。...定义 余弦相似度通过计算两个向量之间的夹角余弦值来衡量它们的相似性。...余弦值越接近1,夹角越小,说明两个向量越相似;余弦值越接近-1,夹角越大,说明两个向量越不相似;余弦值为0时,两个向量正交,表示它们之间没有相关性。...引伸义 余弦相似度在推荐系统、文本分类、信息检索等领域有广泛应用。例如,在推荐系统中,可以通过计算用户的历史偏好向量和物品特征向量之间的余弦相似度,来推荐与用户兴趣最相似的物品。...通常,在文本处理中,余弦相似度值越接近1,两个文本就越相似。 值得注意的是,余弦相似度只考虑向量的方向,而不考虑其大小(即,向量的模)。

    1.2K10

    Python简单实现基于VSM的余弦相似度计算

    在知识图谱构建阶段的实体对齐和属性值决策、判断一篇文章是否是你喜欢的文章、比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识...第三步,余弦相似度计算 这样,就需要一群你喜欢的文章,才可以计算IDF值。依次计算得到你喜欢的文章D=(w1, w2, …, wn)共n个关键词的权重。...计算两篇文章间的相似度就通过两个向量的余弦夹角cos来描述。文本D1和D2的相似性公式如下: ? 其中分子表示两个向量的点乘积,分母表示两个向量的模的积。 计算过后,就可以得到相似度了。...其中余弦定理为什么能表示文章相似度间参考资料。 实例解释 句子A:我喜欢看电视,不喜欢看电影。 句子B:我不喜欢看电视,也不喜欢看电影。 请问怎样才能计算上面两句话的相似程度?...使用余弦这个公式,我们就可以得到,句子A与句子B的夹角的余弦。 余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫”余弦相似性”。

    2.2K40

    python求平均值的怎么编写,python 怎么求平均值

    python求平均值的方法:首先新建一个python文件;然后初始化sum总和的值;接着循环输入要计算平均数的数,并计算总和sum的值;最后利用“总和/数量”的公式计算出平均数即可。...本文操作环境:Windows7系统,python3.5版本,Dell G3电脑。 首先我们先来了解一下计算平均数的IPO模式. 输入:待输入计算平均数的数。...处理:平均数算法 输出:平均数 明白了程序的IPO模式之后,我们打开本地的python的IDE工具,并新建一个python文件,命名为test6.py....【推荐:python视频教程】 第二步,初始化sum总和的值。注意,这是编码的好习惯,在定义一个变量的时候,给一个初始值。 第三步,循环输入要计算平均数的数,并计算总和sum的值。

    8.3K20

    余弦相似度简单介绍

    余弦相似度原理 余弦相似度是一种衡量两个向量之间相似性的方法,它基于向量之间的夹角余弦值来计算。在文本挖掘、推荐系统等领域,余弦相似度被广泛应用来度量文档、用户偏好等对象之间的相似性。...定义 余弦相似度通过计算两个向量之间的夹角余弦值来衡量它们的相似性。...余弦值越接近1,夹角越小,说明两个向量越相似;余弦值越接近-1,夹角越大,说明两个向量越不相似;余弦值为0时,两个向量正交,表示它们之间没有相关性。...引伸义 余弦相似度在推荐系统、文本分类、信息检索等领域有广泛应用。例如,在推荐系统中,可以通过计算用户的历史偏好向量和物品特征向量之间的余弦相似度,来推荐与用户兴趣最相似的物品。...:最后,我们用点积除以两个向量模长的乘积,得到余弦相似度。

    46300

    pytorch的余弦退火学习率

    作者:limzero 地址:https://www.zhihu.com/people/lim0-34 编辑:人工智能前沿讲习 最近深入了解了下pytorch下面余弦退火学习率的使用.网络上大部分教程都是翻译的...由于官方文档也只是给了一个数学公式,对参数虽然有解释,但是解释得不够明了,这样一来导致我们在调参过程中不能合理的根据自己的数据设置合适的参数.这里作一个笔记,并且给出一些定性和定量的解释和结论.说到pytorch自带的余弦学习率调整方法...CosineAnnealingWarmRestarts CosineAnnealingLR 这个比较简单,只对其中的最关键的Tmax参数作一个说明,这个可以理解为余弦函数的半周期.如果max_epoch...=50次,那么设置T_max=5则会让学习率余弦周期性变化5次. ?

    4.5K10

    欧氏距离和余弦相似度

    当做向量时,两者相似度为cosθ,可通过余弦公式计算: ?...均为列向量): num = float(A.T * B) #若为行向量则 A * B.T denom = linalg.norm(A) * linalg.norm(B) cos = num / denom #余弦值...因为有了linalg.norm(),欧氏距离公式实现起来更为方便: dist = linalg.norm(A - B) sim = 1.0 / (1.0 + dist) #归一化 关于归一化: 因为余弦值的范围是...简单扯下实际意义,举个例子吧: 例如某T恤从100块降到了50块(A(100,50)),某西装从1000块降到了500块(B(1000,500)) 那么T恤和西装都是降价了50%,两者的价格变动趋势一致,余弦相似度为最大值...,即两者有很高的变化趋势相似度 但是从商品价格本身的角度来说,两者相差了好几百块的差距,欧氏距离较大,即两者有较低的价格相似度 总结 对欧式距离进行l2归一化等同于余弦距离!

    4.6K30
    领券