展开

关键词

matlab用高斯曲线拟合模型分析疫情数据

ii}.Active = by\_country{ii}.Confirmed - by_country{ii}.Deaths - figure 拟合曲线 有效案例的数量正在下降,曲线看起来大致为高斯曲线 我们可以拟合高斯模型并预测活动案例何时为零吗? 我使用 曲线拟合工具箱 进行高斯拟合。 使用高斯模型无法获得任何合适的结果。

11410

python3-曲线拟合(polyfit

【polyfit】多项式曲线拟合 【polyval】多项式曲线求值 import numpy as np import matplotlib.pyplot as plt x_data = np.random.rand

79120
  • 广告
    关闭

    【玩转 Cloud Studio】有奖调研征文,千元豪礼等你拿!

    想听听你玩转的独门秘籍,更有机械键盘、鹅厂公仔、CODING 定制公仔等你来拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    MATLAB曲线拟合

    曲线拟合函数 多项式拟合函数:polyfit。该函数的结果将保证在数据点上拟合值与数据值差的平方和最小,即最小二乘曲线拟合

    21620

    Python生成随机高斯模糊图片

    Python可以使用opencv库很方便地生成模糊图像,如果没有安装opencv的,可以用pip安装: pip install python-opencv 想了解高斯模糊是什么的话,可以看wiki百科- 高斯模糊。 只要知道这个操作可以生成模糊图片就好了,一行代码即可搞定: import cv2 img = cv2.GaussianBlur(ori_img, (9, 9), 0) 这个函数的第一个参数是原图像,第二个参数是高斯矩阵 很简单,高斯矩阵的尺寸越大,标准差越大,处理过的图像模糊程度越大。 介绍完了简单的高斯模糊操作,我们加一个随机处理,来随机生成模糊程度不同的几张图像,其实也很简单,加一个随机函数来生成高斯矩阵的尺寸就可以了: import cv2 import random imgName

    28210

    曲线拟合的几种解释

    曲线拟合是一个经典的问题,将其数学化后是:已知训练数据x\bf{x}和对应的目标值t\bf{t}。通过构建参数为w\bf{w}的模型,当新的xx出现,对应的tt是多少。 本文将从误差和概率的角度探讨如何解决曲线拟合的问题,具体地,将阐述以下概念: 误差函数 正则化 最大似然估计(MLE) 最大后验估计(MAP) 贝叶斯 误差角度 误差函数 直观的解决思路是最小化训练误差 frac{1}{2}\sum_{n=1}^N\{ y(x_n,\textbf{w}) -t_n\}^2+\frac{\lambda}{2} \Vert \textbf{w} \Vert ^2 概率角度 高斯分布假设 假设每个点都服从均值不一样方差一样的高斯分布,均值为y(xn,w) y(x_n,\textbf{w}),方差为β−1\beta^{-1}。

    58880

    Python 生成 2D 高斯

    本文记录 Python 中二维高斯核的生成方法。 生成思路 使用 cv2.getGaussianKernel(ksize, sigma[, ktype]) 函数 该函数用于生成一维高斯核 生成一维高斯核后乘以自己的转置得到二维高斯核 核心函数 cv2 .getGaussianKernel(ksize, sigma[, ktype]) ,函数生成一维高斯核 官方函数文档 参数说明 参数 描述 限制 ksize 核尺寸(文档中要求奇数 ,使用时可以是偶数) 正整数 sigma 高斯函数的标准差 正数 ktype 滤波器系数的类型,可以是 cv2.CV_32f 或 cv2.CV_64f,配置参数后生成数据会分别表示为 float32 mathrm{i}}=\alpha * e^{-(\mathrm{i}-(\mathrm{ksize}-1) / 2)^{2} /(2 * \mathrm{sigma})^{2}} 生成方法 生成一维高斯

    8620

    Python实现所有算法-高斯消除法

    这篇文章写的算法是高斯消元,是数值计算里面基本且有效的算法之一:是求解线性方程组的算法。 这里再细写一下: 在数学中,高斯消元法,也称为行约简,是一种求解线性方程组的算法。 该方法以卡尔·弗里德里希·高斯 ( Carl Friedrich Gauss ,1777-1855)的名字命名,尽管该方法的一些特例——尽管没有证明——早在公元 179 年左右就为中国数学家所知。 在这种情况下,术语高斯消元是指过程,直到它达到其上三角形或(未简化的)行梯形形式。出于计算原因,在求解线性方程组时,有时最好在矩阵完全约简之前停止行操作。 就好像这样 其实还有内容,但是公式编辑实在不会哇,这里给出程序的伪代码: 高斯消元法将给定的m × n矩阵A转换为行梯形矩阵。 上面这个函数是高斯函数的一个子函数,作用是给出最简的阶梯行列式。

    6230

    高斯滤波

    import cv2 o=cv2.imread("C:/Users/xpp/Desktop/Lena.png")#原始图像 r=cv2.GaussianBlur(o,(5,5),0,0)#高斯滤波 cv2 .imshow("original",o) cv2.imshow("result",r) cv2.waitKey() cv2.destroyAllWindows() 算法:高斯滤波将中心的权重值增加 dst=cv2.GaussianBlur(src, ksize, sigmaX, sigmaY, borderType) dst表示返回值,表示进行高斯滤波后得到的结果 src表示输入图像,图像深度是CV

    7520

    高斯过程

    高斯过程GaussianProcess ? 高斯过程的理论知识 非参数方法的基本思想 image.png image.png 高斯过程的基本概念 image.png image.png 高斯过程的Python实现 使用Numpy手动实现 定义核函数 image.png print(l_opt, sigma_f_opt) 0.9872536793237083 0.8613778055591963 更高维的高斯过程 image.png #噪音参数 小结 从前面我们可以看出,与常见的机器学习模型不同,用高斯过程做预测的方法是直接生成一个后验预测分布(依然是高斯分布)。 从统计学的角度上来看,利用高斯过程模型做预测具有很高的价值。

    64520

    高斯函数、高斯积分和正态分布

    正态分布是高斯概率分布。高斯概率分布是反映中心极限定理原理的函数,该定理指出当随机样本足够大时,总体样本将趋向于期望值并且远离期望值的值将不太频繁地出现。高斯积分是高斯函数在整条实数线上的定积分。 这三个主题,高斯函数、高斯积分和高斯概率分布是这样交织在一起的,所以我认为最好尝试一次性解决这三个主题(但是我错了,这是本篇文章的不同主题)。 本篇文章我们首先将研究高斯函数的一般定义是什么,然后将看一下高斯积分,其结果对于确定正态分布的归一化常数是非常必要的。最后我们将使用收集的信息理解,推导出正态分布方程。 两个高斯函数的图。第一个高斯(绿色)的λ=1和a=1。第二个(橙色)λ=2和a=1.5。两个函数都不是标准化的。也就是说,曲线下的面积不等于1。 概率密度函数的推导 我们将从广义高斯函数f(x)=λ exp(−ax^2)开始,正态分布下的面积必须等于1所以我们首先设置广义高斯函数的值,对整个实数线积分等于1 这里将 -a- 替换为 a^2 稍微修改了高斯分布

    20810

    高斯滤波

    高斯滤波和均值滤波的原理一样,在均值滤波中所有的像素点的权重都一样,而在高斯滤波中则是越靠近中心的像素点权重远大,权重的分配由二维高斯公式生成的矩阵决定,矩阵的阶和扫描的窗口大小一致。 关于二维高斯公式这里不再赘述,不了解的可以看看这篇文章:高斯函数的详细分析,这里就只给出一个二维高斯分布的产生函数了: //生成高斯核 double* make_kernel(int size, double

    46410

    高斯模糊

    一、高斯模糊的概念 高斯模糊,也叫高斯平滑,英文为:Gaussian Blur,是图像处理中常用的一种技术,主要用来降低图像的噪声和减少图像的细节。 高斯模糊在许多图像处理软件中也得到了广泛的应用。 二、高斯模糊的原理 1、模糊在图像中的理解 模糊在图像中的意思可理解为:中心像素的像素值为由周围像素的像素值的和的平均值。 /所有像素高斯权重的和,得到像素最终的权重。 有了权重矩阵就可计算高斯模糊。假设现有9个像素点,灰度值(0-255)如下: 每个点乘以自己的权重值: 将这9个值加起来,就是中心点的高斯模糊的值。 对所有点重复这个过程,就得到了高斯模糊后的图像。如果原图是彩色图片,可以对RGB三个通道分别做高斯模糊。

    17620

    Fityk-曲线拟合工具

    主页:http://www.unipress.waw.pl/fityk/ 在随机数据的曲线拟合上取得的重要成果,可以和Excel处理的数学公式类型一样的多。 Fityk主要是图形用户界面,同时也提供命令行版本(cfityk),因此它可用于自动化曲线拟合和预测。cfityk使用的指令文件只不过是使用GUI版本生成的Action脚本。 ?

    1.3K50

    多项式曲线拟合

    plt.plot(xxa,yya,color='b',linestyle='-',marker='',label='Fitted Curve') plt.legend() plt.show() 算法:多项式曲线拟合是是最小二乘法的一个最为典型应用

    8130

    最小二乘法曲线拟合

    加入正态分布噪声后的y y1=[np.random.normal(0,0.1)+y for y in y0] #随机产生一组多项式分布的参数 p0=np.random.randn(m) #利用内置的最小二乘法函数计算曲线拟合参数 6.47495637e+04 2.88643748e+04 -6.80602407e+03 7.57452772e+02 -2.89393911e+01 1.19739704e+01] 算法:最小二乘法曲线拟合是通过最小化误差的平方和寻找数据的最佳函数匹配 ,应用在曲线拟合、线性回归预测,数理统计等领域。

    13120

    Python数据可视化之高斯分布

    Python数据可视化之高斯分布 一维高斯分布模型 高斯分布: N(μ,δ2)=1δ2π−−√e−(x−μ)22δ2 N(\mu,\delta^2) = \frac {1}{\delta\sqrt {2\pi}} e^{-\frac{(x-\mu)^2}{2\delta^2}} Python实现 在python中,我们通过坐标变换来求得任意的高斯分布。 当增大数据样本点时,上述样本分布近似于高斯分布: x = np.random.randn(100000) n, bins, patches = plt.hist(x, 50, normed=1, facecolor 因此要想得到任意的高斯分布模型,我们只需要解出x′x'即可,解得x′=μ+δxx' = \mu + \delta x 又因为xx由np.random.randn()生成,所以在python中,我们可以有如下形式 二维高斯分布模型 对应的,只需要生成符合正态分布的x和y即可,代码如下: mu_x,delta_x= 70,4.2 mu_y,delta_y = 20,2.1 x = mu_x + delta_x *

    1.8K10

    《PRML》读书笔记之三:概率论(下)

    从图中我们可以看出高斯分布满足: image.png image.png image.png image.png ? image.png ? 下面我们将给出这一偏差在多项式曲线拟合的过拟合问题中的体现。 3.6 曲线拟合再考察 之前我们已经从误差最小化的角度介绍了多项式曲线拟合问题,本节我们将从概率角度来考察该问题,以更加深刻地认识误差函数和正则化,并且可以让我们从贝叶斯视角来看待这个问题。 为了达成这一目标,我们需要假设给定 的值,对应的 的值满足一个高斯分布,其均值为多项式曲线 的值,因此我们有: 其中,为了和后续章节保持一致性,我们定义了精度参数 ,其对应于分布的方差的倒数。

    26520

    Android实现图片转高斯模糊以及高斯模糊布局

    第一个为大家介绍图片如何转高斯模拟: 1.方法的实现: public static void updateBgToBlur(Activity a, Bitmap bmpToBlur, View view R.drawable.bg_tageditor); } else { slidingUpPanelLayout.setBackgroundResource(R.drawable.bg_tageditor); } 二、高斯模糊布局 : 项目需求: 现有一个紫色背景图片, 相册图片覆盖在背景图片 , 一个Framlayout 覆盖在这个含有相册图片的背景图中 ,实现模糊盖在上面的高斯模拟效果: 1 引用BlurView: compile

    57321

    相关产品

    • Serverless HTTP 服务

      Serverless HTTP 服务

      Serverless HTTP 基于腾讯云 API 网关平台,为互联网业务提供 0 配置、高可用、弹性扩展的对外 RESTful API 能力,支持 swagger/ openAPI 等协议。便于客户快速上线业务逻辑,通过规范的 API 支持内外系统的集成和连接。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券