首页
学习
活动
专区
圈层
工具
发布

【笔记】PyTorch DDP 与 Ring-AllReduce

现在普遍用的较多的是DDP的方式,简单来讲,DDP就是在每个计算节点上复制模型,并独立地生成梯度,然后在每次迭代中互相传递这些梯度并同步,以保持各节点模型的一致性。         ...而在pytorch中的DDP实际就是使用了Ring-ALLReduce来实现AllReduce算法。         ...使用相反顺序的原因是,DDP 期望梯度在向后传递期间大致按照该顺序准备就绪。)         ...实际上,DDP中的设计是通过将全部模型参数划分为无数个小的bucket,然后在bucket级别建立allreduce。...1、Pytorch中分布式训练用的比较多的是DDP;         2、DDP中的Allreduce使用的是ring-allreduce,并且使用bucket来引入异步;         3、Allreduce

2.7K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    DDP分布式的随机卡死,带你从0调试解决

    PyTorch DDP 随机卡死复盘:最后一个 batch 挂起,NCCL 等待不返回,三步修复 Sampler & drop_last很多人在接触深度学习的过程往往都是从自己的笔记本开始的,但是从接触工作后...Async operation timed out接着通过kill -SIGQUIT 打印 Python 栈后发现停在 反向传播的梯度 allreduce*上(DistributedDataParallel...但是这个现象在关掉 DDP(单卡训练)完全正常;把 batch_size 改小/大,卡住概率改变但仍会发生。️ 场景重现当我们的问题在单卡不会出现,但是多卡会出现问题的时候,问题点集中在数据的问题上。...True, sampler=sampler, num_workers=4) model = torch.nn.Linear(3*224*224, 10).to(device) model = DDP...(ddp.parameters(), lr=0.1) for epoch in range(5): sampler.set_epoch(epoch) # ✅ 关键 3:每个 epoch

    63810

    PyTorch如何加速数据并行训练?分布式秘籍大揭秘

    下图 1 描述了 DDP 构造块的组成,其中包含一个 Python API 前端和 C++ 梯度下降核心算法,并采用了 c10d 聚合通信库。 ?...Python API 前端 在设计 API 时,研究者制定了以下两个设计目标来达到必要的功能: 非侵入式:对应用提供的 API 必须是非侵入式的; 拦截式:API 需要允许拦截各种信号并立即触发适当的算法...以下算法 1 给出了 DDP 的伪代码: ? 下图 4 展示了 DDP 在前向传播和反向传播过程中如何与本地模型交互: ?...DDP 同时在 Python 和 C++ 上都可以实现,Python 开放了 API 并组成了非性能关键因素组件,而 C++ 提供了核心梯度下降算法。...Python API 通过 Pybind11 的 API 调用了 C++ 内核。 Python 前端 Python 前端中的实现细节决定了 DDP 的行为。

    1.1K20

    PyTorch如何加速数据并行训练?分布式秘籍大揭秘

    下图 1 描述了 DDP 构造块的组成,其中包含一个 Python API 前端和 C++ 梯度下降核心算法,并采用了 c10d 聚合通信库。 ?...Python API 前端 在设计 API 时,研究者制定了以下两个设计目标来达到必要的功能: 非侵入式:对应用提供的 API 必须是非侵入式的; 拦截式:API 需要允许拦截各种信号并立即触发适当的算法...以下算法 1 给出了 DDP 的伪代码: ? 下图 4 展示了 DDP 在前向传播和反向传播过程中如何与本地模型交互: ?...DDP 同时在 Python 和 C++ 上都可以实现,Python 开放了 API 并组成了非性能关键因素组件,而 C++ 提供了核心梯度下降算法。...Python API 通过 Pybind11 的 API 调用了 C++ 内核。 Python 前端 Python 前端中的实现细节决定了 DDP 的行为。

    1.2K30

    PyTorch如何加速数据并行训练?分布式秘籍大揭秘

    下图 1 描述了 DDP 构造块的组成,其中包含一个 Python API 前端和 C++ 梯度下降核心算法,并采用了 c10d 聚合通信库。 ?...Python API 前端 在设计 API 时,研究者制定了以下两个设计目标来达到必要的功能: 非侵入式:对应用提供的 API 必须是非侵入式的; 拦截式:API 需要允许拦截各种信号并立即触发适当的算法...以下算法 1 给出了 DDP 的伪代码: ? 下图 4 展示了 DDP 在前向传播和反向传播过程中如何与本地模型交互: ?...DDP 同时在 Python 和 C++ 上都可以实现,Python 开放了 API 并组成了非性能关键因素组件,而 C++ 提供了核心梯度下降算法。...Python API 通过 Pybind11 的 API 调用了 C++ 内核。 Python 前端 Python 前端中的实现细节决定了 DDP 的行为。

    1K20

    PyTorch 分布式(8) -------- DistributedDataParallel之论文篇

    Computation with Communication 4.2.4 Gradient Accumulation 4.3 Collective Communication 0x05 实施 5.1 Python...因此,即使来自不同流程的优化器都是独立的,它们也应该能够在每次迭代结束时将其本地模型副本置于相同的状态 下图示出了DDP的构建块,它包含Python API前端、C++梯度归并核心算法,并使用 c10d...DDP实现同时存在于 Python和C++文件,Python 部分包括公开API和非性能关键的组件,C++提供核心梯度归并算法。Python API 通过Pybind11来调用C++核心。...5.1 Python前端 DDP nn.module在distributed.py中实现,它包含面向用户的组件。组件包括构造函数、forward 函数和 no_sync 上下文管理器。...除了在第4节中强调的一般思想外,Python前端中还有几个塑造DDP行为的实现细节。

    1.6K20
    领券