首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

sklearn和statsmodel得到截然不同的逻辑回归结果

sklearn和statsmodel是常用的Python库,用于进行统计分析和机器学习任务。两者在逻辑回归模型中的结果可能不同的原因是由于它们在实现逻辑回归算法时采用了不同的方法和假设。

sklearn(Scikit-learn)是一个流行的机器学习库,提供了丰富的算法和工具,用于各种机器学习任务。对于逻辑回归,sklearn使用了一种基于优化算法的方法,称为“最大似然估计”。在这种方法中,逻辑回归模型的参数通过最大化似然函数来拟合数据。

statsmodel是另一个强大的统计分析库,它专注于统计建模和推断。在逻辑回归中,statsmodel使用了一种不同的方法,称为“最小二乘估计”。该方法假设模型的残差符合高斯分布,通过最小化残差平方和来拟合数据。

由于两者使用了不同的优化算法和假设,因此在相同的数据集上得到的逻辑回归结果可能会不同。为了选择适合特定任务的逻辑回归模型,我们可以根据具体情况评估它们的优势和应用场景。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云机器学习平台:提供了丰富的机器学习算法和模型训练、调优工具,可用于逻辑回归等任务。详细信息请访问:https://cloud.tencent.com/product/tccli
  • 腾讯云统计分析平台:提供了强大的统计分析功能,可用于统计建模和推断。详细信息请访问:https://cloud.tencent.com/product/eagleeye

需要注意的是,以上是基于腾讯云的产品,其他品牌商也有类似的云计算产品可供选择。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

机器学习笔记之sklearn的逻辑回归Logistics Regression实战

0x00 概述 本文介绍sklearn 逻辑回归模型的参数,以及具体的实战代码。 0x01 逻辑回归的二分类和多分类 上次介绍的逻辑回归的内容,基本都是基于二分类的。...那么有没有办法让逻辑回归实现多分类呢?那肯定是有的,还不止一种。 实际上二元逻辑回归的模型和损失函数很容易推广到多元逻辑回归。比如总是认为某种类型为正值,其余为0值。...sklearn逻辑回归参数 --penalty 正则化类型选择,字符串类型,可选'l1','l2','elasticnet'和None,默认是'l2',通常情况下,也是选择'l2'。...sklearn逻辑回归参数 --multi_class multi_class参数决定了我们分类方式的选择,有 ovr和multinomial两个值可以选择,默认是 ovr。...如果是二元逻辑回归,ovr和multinomial并没有任何区别,区别主要在多元逻辑回归上。

2K20
  • 逻辑回归的介绍和应用

    虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。 而对于逻辑回归而且,最为突出的两点就是其模型简单和模型的可解释性强。...逻辑回归模型的优劣势: 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低; 缺点:容易欠拟合,分类精度可能不高 1.1 逻辑回归的应用 逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学...例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病...其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。...0.5,并且logi(⋅)函数的取值范围为(0,1)(0,1) 对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的w 从而得到一个针对于当前数据的特征逻辑回归模型。

    18810

    逻辑回归和sigmod函数的由来

    但是这些都是纸上谈兵,只要结果好、程序高级、图文美观,就能得到评审老师的青睐。和实际模型上线,真金白银实战还是有很大的区别。 逻辑回归已经在各大银行和公司都实际运用于业务,已经有很多前辈写过逻辑回归。...),该结果可以直观地展示给建模人员和业务使用人员。...因为逻辑回归的结果(概率prob)是0到1之间的连续值,在信贷中可以根据资金松紧程度和公司策略对阈值进行灵活调整,从而划定放贷人群、拒绝人群和转人工人群。 ④上线方便。...而不把逻辑回归叫成逻辑分类,个人看法有可能和逻辑回归输出的值是0到1之间的连续值,而不是单纯的几个类别有关。...之前由于工作需要,自己看了很多资料把逻辑回归的结果转成了评分卡的形式,写完了Python的实现函数,在接下来的时间我会好好总结评分卡的内容,争取评分卡的文章也早日和大家见面。

    2.4K62

    从零开始学量化(五):用Python做回归

    python中实现OLS的模块很多,numpy、sklearn、statsmodels中都有,这里给出numpy,statsmodel中的用法。...lstsq的输出包括四部分:回归系数、残差平方和、自变量X的秩、X的奇异值。一般只需要回归系数就可以了。...lstsq比较方便用在只需要回归系数的情况下,如果需要对回归结果做评估,比如算拟合值、算残差、算R2,做t检验、F检验、算P值,就很麻烦了,而statsmodel恰好适合这种情况。...它的主要思想是给解释变量加上一个权重,从而使得加上权重后的回归方程方差是相同的.因此在GLS方法下可以得到估计量的无偏和一致估计。 ? ?...写在最后 本文总结了比较常用的一些方法,除此外,还有Lasso、Ridge等回归方法,可以用sklearn实现,不再赘述,列出一些参考网站,如果有没有写清楚的地方,可以再看一看。

    8.1K31

    使用Statsmodel进行假设检验和线性回归

    可以将文件名替换为其他需要的数据文件名。 使用 Statsmodel 探索和分析数据 我们已经加载了数据,现在可以开始使用 statsmodel 探索和分析它。...p-value是统计假设检验中针对原假设的证据强度的度量。它告诉我们在原假设为真的情况下观察到的结果比我们得到的结果更极端的概率。简而言之,它可以帮助我们确定仅靠偶然获得结果的可能性。...使用 Statsmodel 进行简单线性回归 上面是statsmodel 库的基础知识,让我们更深入地研究线性回归模型。线性回归是一种对因变量与一个或多个自变量之间的关系进行建模的统计方法。...我们将介绍使用 statsmodel 的简单线性回归。 上面的代码是对“X”和“Y”变量之间的关系进行建模。...我们可以使用 Statsmodel 进行多元线性回归 假设要对“Y”变量与两个自变量“X1”和“X2”之间的关系建模,那么代码如下:  model = smf.ols('Y ~ X1 + X2', data

    57210

    Python机器学习教程—线性回归的实现(不调库和调用sklearn库)

    本文尝试使用两个版本的python代码,一个是不调用sklearn库版本,另一个是调用sklearn库版本的 ---- 线性回归介绍 什么是线性回归?...前文曾提到过,是指利用机器学习的模型算法找出一组数据输入和输出之间的关系,输出是连续的数据便是回归问题,而所谓线性回归,即是使用线性数学模型解决生活中回归预测问题。...那么线性回归中最难的部分也就是模型训练的部分——怎么寻找到最适合的斜率和截距,也就是公式中的 线性回归实现(不调用sklearn库) 首先设定数据,是员工的工龄(年限)对应薪水(千元)的数据,使用散点图观察一下大致是否符合线性回归的情况...w1=w1-lrate*d1 输出结果如下图,可观察到损失函数loss在不断的下降  根据训练好的模型在图上绘制样本点和回归线 # 绘制样本点 plt.grid(linestyle=':') plt.scatter...',linewidth=2,label='Regression Line') 结果如下图  线性回归实现(调用sklearn库) 真正在应用上,可以直接使用python的sklearn库中的函数,只需几行代码就可完成线性回归

    1.5K40

    使用Statsmodel进行假设检验和线性回归

    可以将文件名替换为其他需要的数据文件名。 使用 Statsmodel 探索和分析数据 我们已经加载了数据,现在可以开始使用 statsmodel 探索和分析它。...p-value是统计假设检验中针对原假设的证据强度的度量。它告诉我们在原假设为真的情况下观察到的结果比我们得到的结果更极端的概率。简而言之,它可以帮助我们确定仅靠偶然获得结果的可能性。...使用 Statsmodel 进行简单线性回归 上面是statsmodel 库的基础知识,让我们更深入地研究线性回归模型。线性回归是一种对因变量与一个或多个自变量之间的关系进行建模的统计方法。...我们将介绍使用 statsmodel 的简单线性回归。 上面的代码是对“X”和“Y”变量之间的关系进行建模。...我们可以使用 Statsmodel 进行多元线性回归 假设要对“Y”变量与两个自变量“X1”和“X2”之间的关系建模,那么代码如下: model = smf.ols('Y ~ X1 + X2', data

    46210

    理解逻辑回归中的ROC曲线和KS值「建议收藏」

    1.回归和分类任务 分类和回归都属于监督学习(训练样本带有信息标记,利用已有的训练样本信息学习数据的规律预测未知的新样本标签) 分类预测的结果是离散的(例如预测明天天气-阴,晴,雨) 回归预测的任务是连续的...(例如预测明天的温度,23,24,25度) 分类中比较常用的是二分类(label结果为0或1两种) 2.逻辑回归不是回归 从名字来理解逻辑回归.在逻辑回归中,逻辑一词是logistics [lə’dʒɪstɪks...3.举个栗子 逻辑回归就是在用回归的办法做分类任务,先举个列子:最简单的二分类,结果是正例或者负例的任务. 3.1 一个二分类的栗子 按照多元线性回归的思路,我们可以先对这个任务进行线性回归,学习出这个事情结果的规律...预测肿瘤大小还是一个回归问题,得到的结果(肿瘤的大小)也是一个连续型变量.通过设定阈值,就成功将回归问题转化为了分类问题.但是,这样做还存在一个问题....逻辑回归得到的结果是概率,那么就要取阈值来划分正负,这时候,每划一个阈值,就会产生一组FPR和TPR的值,然后把这组值画成坐标轴上的一个点,这样,当选取多组阈值后,就形成了ROC曲线(每次选取一个不同的阈值

    2.7K20

    【Python环境】python的数据科学资源

    python和R是数据科学家手中两种最常用的工具,R已经介绍的太多了,后续我们来玩玩python吧。...包: python也有非常多的扩展包,不过用于数据分析的并不象R那么品种繁多。常用的: numpy:提供最基本的数值计算,使向量化计算成为可能。...statsmodel:提供包括回归、检验等多种统计分析函数,python也能干R的活。 sklearn:数据挖掘必备,各种函数非常丰富,文档齐全,看得出CS出品就是不一样啊。...现有可以找到的书基本上分为三类,一类是用基本语法实现统计分析和科学计算,例如下面的: Think Stats Think Bayes A Primer on Scientific Programming...ipython notebook,它可以把代码及其结果都存在一个网页上,方便分享学习。

    69460

    AI人工智能逻辑回归的原理、优缺点、应用场景和实现方法

    本文将详细介绍AI人工智能逻辑回归的原理、优缺点、应用场景和实现方法。图片原理逻辑回归是一种针对二分类问题的线性模型,它可以将输入特征映射到输出类别的概率。...优缺点逻辑回归作为一种简单而有效的分类算法,具有以下优缺点:优点:简单易懂:逻辑回归是一种基于线性模型的算法,易于理解和实现。计算效率高:逻辑回归的计算复杂度较低,可以快速处理大规模数据集。...可解释性强:逻辑回归可以通过系数来解释变量对分类结果的影响。鲁棒性强:逻辑回归对异常数据的影响较小,具有较好的鲁棒性。...舆情分析:逻辑回归可以用于舆情分析,根据新闻和社交媒体的内容预测其情感倾向。...自己编写代码可以更好地理解逻辑回归的原理和实现方法,以便在实际问题中进行调整和优化。总结本文介绍了AI人工智能逻辑回归的原理、优缺点、应用场景和实现方法。

    2.2K00

    Python环境下的8种简单线性回归算法

    同样重要的一点是,数据科学家需要从模型得到的结果中来评估与每个特征相关的重要性。 然而,在 Python 中是否只有一种方法来执行线性回归分析呢?如果有多种方法,那我们应该如何选择最有效的那个呢?...结果显示,这是处理线性回归问题最快速的方法之一。...然而,对于真实世界的问题,它的使用范围可能没那么广,我们可以用交叉验证与正则化算法比如 Lasso 回归和 Ridge 回归来代替它。但是要知道,那些高级函数的本质核心还是从属于这个模型。...可以在 GitHub 查看这个方法的代码。下方给出了最终的结果。由于模型的简单性,stats.linregress 和简单矩阵求逆乘法的速度最快,甚至达到了 1 千万个数据点。 ?...其中大部分方法都可以延伸到更一般的多变量和多项式回归问题上。我们没有列出这些方法的 R² 系数拟合,因为它们都非常接近 1。 对于(有百万人工生成的数据点的)单变量回归,回归系数的估计结果非常不错。

    1.6K90

    Python环境下的8种简单线性回归算法

    同样重要的一点是,数据科学家需要从模型得到的结果中来评估与每个特征相关的重要性。 然而,在 Python 中是否只有一种方法来执行线性回归分析呢?如果有多种方法,那我们应该如何选择最有效的那个呢?...结果显示,这是处理线性回归问题最快速的方法之一。...然而,对于真实世界的问题,它的使用范围可能没那么广,我们可以用交叉验证与正则化算法比如 Lasso 回归和 Ridge 回归来代替它。但是要知道,那些高级函数的本质核心还是从属于这个模型。...可以在 GitHub 查看这个方法的代码。下方给出了最终的结果。由于模型的简单性,stats.linregress 和简单矩阵求逆乘法的速度最快,甚至达到了 1 千万个数据点。...其中大部分方法都可以延伸到更一般的多变量和多项式回归问题上。我们没有列出这些方法的 R² 系数拟合,因为它们都非常接近 1。 对于(有百万人工生成的数据点的)单变量回归,回归系数的估计结果非常不错。

    1.6K90

    Python环境下的8种简单线性回归算法

    同样重要的一点是,数据科学家需要从模型得到的结果中来评估与每个特征相关的重要性。 然而,在 Python 中是否只有一种方法来执行线性回归分析呢?如果有多种方法,那我们应该如何选择最有效的那个呢?...结果显示,这是处理线性回归问题最快速的方法之一。...然而,对于真实世界的问题,它的使用范围可能没那么广,我们可以用交叉验证与正则化算法比如 Lasso 回归和 Ridge 回归来代替它。但是要知道,那些高级函数的本质核心还是从属于这个模型。...可以在 GitHub 查看这个方法的代码。下方给出了最终的结果。由于模型的简单性,stats.linregress 和简单矩阵求逆乘法的速度最快,甚至达到了 1 千万个数据点。 ?...其中大部分方法都可以延伸到更一般的多变量和多项式回归问题上。我们没有列出这些方法的 R² 系数拟合,因为它们都非常接近 1。 对于(有百万人工生成的数据点的)单变量回归,回归系数的估计结果非常不错。

    1.2K50
    领券