首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

markdown常用数学符号cov(markdown求和符号)

希腊字母 \alpha α \alphaα \beta β \betaβ  \gamma γ \gammaγ  \Gamma Γ   \Gamma Γ  \delta δ \deltaδ \Delta Δ \DeltaΔ \epsilon ϵ \epsilonϵ \varepsilon  ε \varepsilonε \zeta ζ \zetaζ \eta η \etaη  \theta θ \thetaθ \Theta Θ \ThetaΘ \vartheta ϑ \varthetaϑ \iota ι \iotaι  \kappa κ \kappaκ  \lambda λ \lambdaλ  \Lambda Λ \LambdaΛ \mu  μ \muμ \nu ν \nuν \xi ξ \xiξ \Xi Ξ \XiΞ \pi π \piπ \Pi Π \PiΠ \varpi ϖ \varpiϖ   \rho ρ \rhoρ \varrho ϱ \varrhoϱ  \sigma σ \sigmaσ \varsigma  ς \varsigmaς \tau τ \tauτ \upsilon υ \upsilonυ \Upsilon Υ \UpsilonΥ \phi ϕ \phiϕ \Phi Φ \PhiΦ \varphi φ \varphiφ  \chi χ \chiχ  \psi ψ \psiψ \Psi Ψ \PsiΨ \omega ω \omegaω \Omega Ω \OmegaΩ

02

常见函数的泰勒公式展开_基本泰勒公式展开表

e x = ∑ n = 0 ∞ 1 n ! x n = 1 + x + 1 2 ! x 2 + ⋯ ∈ ( − ∞ , + ∞ ) sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯   , x ∈ ( − ∞ , + ∞ ) cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯   , x ∈ ( − ∞ , + ∞ ) ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − 1 2 x 2 + 1 3 x 3 + ⋯   , x ∈ ( − 1 , 1 ] 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + ⋯   , x ∈ ( − 1 , 1 ) 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + ⋯   , x ∈ ( − 1 , 1 ) ( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯   , x ∈ ( − 1 , 1 ) arctan ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 = x − 1 3 x 3 + 1 5 x 5 + ⋯ + x ∈ [ − 1 , 1 ] arcsin ⁡ x = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 = x + 1 6 x 3 + 3 40 x 5 + 5 112 x 7 + 35 1152 x 9 + ⋯ + , x ∈ ( − 1 , 1 ) tan ⁡ x = ∑ n = 1 ∞ B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + 62 2835 x 9 + 1382 155925 x 11 + 21844 6081075 x 13 + 929569 638512875 x 15 + ⋯   , x ∈ ( − π 2 , π 2 ) \begin{aligned} e^{x}&=\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}=1+x+\frac{1}{2 !} x^{2}+\cdots \in(-\infty,+\infty) \\ \sin x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}+\cdots, x \in(-\infty,+\infty) \\ \cos x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}+\cdots, x \in(-\infty,+\infty) \\ \ln (1+x)&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots, x \in(-1,1] \\ \frac{1}{1-x}&=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, x \in(-1,1) \\ \frac{1}{1+x}&=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, x \in(-1,1)\\ (1+x)^{\alpha}&=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots, x \in(-1,1) \\ \arctan x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+

05
领券