http://blog.csdn.net/u011239443/article/details/73136866 RNN 循环神经网络(RNN)的特殊的地方在于它保存了自己的状态,每次数据输入都会更新状态...例子 RNN的状态是通过一个向量来表示的,设该向量的维度为n,输入数据x的维度为m,则参数个数为(n+m)∗n+n+n∗m+m(n+m)*n+n+n*m+m。...第1轮 设一开始的状态为w0=(0,0)w_0 = (0,0) , x1=(1)x_1=(1) , RNN 和将其合并成一个向量y1=(0,0,1)y_1 = (0,0,1) ,则参数矩阵A1A_1 为一个...扩展 双向RNN 顾名思义,双向的状态传播: ?...深度RNN ? 要注意的是,RNN的dropout不会在深度方向上使用,只会在状态输出到下一轮的时候使用。
1. simple RNN 下面创建一个简单的 2 层 RNN,每层有 100 个神经元,输出层是单个神经元的 dense 层: model1 = keras.models.Sequential() model1...Seq2Seq 建立一个 Seq2Seq 模型,和简单 RNN的区别是,第二个 RNN 层也用了 return sequences=True model2 = keras.models.Sequential...Seq2Seq LSTM 将普通 rnn 层换成 lstm 层 model3 = keras.models.Sequential() model3.add(keras.layers.LSTM(100,
本文介绍下 RNN 及几种变种的结构和对应的 TensorFlow 源码实现,另外通过简单的实例来实现 TensorFlow RNN 相关类的调用。...我们来分析一下 TensorFlow 里面 RNN Cell 的实现。...TensorFlow 实现 RNN Cell 的位置在 python/ops/rnn_cell_impl.py,首先其实现了一个 RNNCell 类,继承了 Layer 类,其内部有三个比较重要的方法,...接下来我们来看下 LSTMCell 的 TensorFlow 代码实现。...我们用一个实例感受一下: import tensorflow as tf cell = tf.nn.rnn_cell.GRUCell(num_units=128) print(cell.state_size
今天老shi将给大家介绍深度学习中另外一种非常重要的神经网络类型——循环神经网络RNN,它最擅长处理序列问题! 举个栗子,比如,老师说小明总是上课迟到,今天罚____打扫卫生。...最后是一个非常简单的文本分析RNN代码实践案例,有兴趣的同学可以跟着现实一下。下节课老shi准备给大家介绍非常常用的RNN变种LSTM和GRU,敬请期待!!...from tensorflow import kerasfrom tensorflow.keras import layers num_words = 30000maxlen = 200 #导入数据...padding='post')print(x_train.shape, ' ', y_train.shape)print(x_test.shape, ' ', y_test.shape) def RNN_model...loss=keras.losses.BinaryCrossentropy(), metrics=['accuracy'])return model model = RNN_model
上周写的文章《完全图解 RNN、RNN 变体、Seq2Seq、Attention 机制》介绍了一下 RNN 的几种结构,今天就来聊一聊如何在 TensorFlow 中实现这些结构。...这篇文章的主要内容为: 一个完整的、循序渐进的学习 TensorFlow 中 RNN 实现的方法。这个学习路径的曲线较为平缓,应该可以减少不少学习精力,帮助大家少走弯路。...一些可能会踩的坑 TensorFlow 源码分析 一个 Char RNN 实现示例,可以用来写诗,生成歌词,甚至可以用来写网络小说!...六、一个练手项目:Char RNN 上面的内容实际上就是 TensorFlow 中实现 RNN 的基本知识了。这个时候,建议大家用一个项目来练习巩固一下。...九、总结 最后简单地总结一下,这篇文章提供了一个学习 TensorFlow RNN 实现的详细路径,其中包括了学习顺序、可能会踩的坑、源码分析以及一个示例项目 hzy46/Char-RNN-TensorFlow
上周写的文章《完全图解RNN、RNN变体、Seq2Seq、Attention机制》介绍了一下RNN的几种结构,今天就来聊一聊如何在TensorFlow中实现这些结构,这篇文章的主要内容为: 一个完整的、...循序渐进的学习TensorFlow中RNN实现的方法。...一些可能会踩的坑 TensorFlow源码分析 一个Char RNN实现示例,可以用来写诗,生成歌词,甚至可以用来写网络小说!...六、一个练手项目:Char RNN 上面的内容实际上就是TensorFlow中实现RNN的基本知识了。这个时候,建议大家用一个项目来练习巩固一下。...九、总结 最后简单地总结一下,这篇文章提供了一个学习TensorFlow RNN实现的详细路径,其中包括了学习顺序、可能会踩的坑、源码分析以及一个示例项目hzy46/Char-RNN-TensorFlow
RNN 循环神经网络 学习于:简单粗暴 TensorFlow 2 1....tf.keras.applications.MobileNetV2(),可以调用 VGG16 、 VGG19 、 ResNet 、 MobileNet 等内置模型,使用预训练好的权重初始化网络 import tensorflow...as tf import tensorflow_datasets as tfds num_epoch = 2 batch_size = 16 learning_rate = 1e-3 version...RNN 循环神经网络 数据预处理,字符 与 idx 的相互转换映射, 字符集 获取 batch_size 个样本、每个样本的下一个字符(标签) import tensorflow as tf import
1408.5882 还可以去读dennybritz大牛的博客: http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow.../ 以及字符级CNN的论文: https://arxiv.org/abs/1509.01626 本文是基于TensorFlow在中文数据集上的简化实现,使用了字符级CNN和RNN对中文文本进行分类,达到了较好的效果...CNN模型 具体参看cnn_model.py的实现。 大致结构如下: ? 训练与验证 运行 python run_cnn.py train,可以开始训练。 ?...RNN循环神经网络 配置项 RNN可配置的参数如下所示,在rnn_model.py中。 ? RNN模型 具体参看rnn_model.py的实现。 大致结构如下: ?...测试 运行 python run_rnn.py test 在测试集上进行测试。 ?
tensorflow 双向 rnn 如何在tensorflow中实现双向rnn 单层双向rnn 单层双向rnn (cs224d) tensorflow中已经提供了双向rnn的接口,它就是tf.nn.bidirectional_dynamic_rnn...定义前向和反向rnn_cell 定义前向和反向rnn_cell的初始状态 准备好序列 调用bidirectional_dynamic_rnn import tensorflow as tf from tensorflow.contrib...多层双向rnn 多层双向rnn(cs224d) 单层双向rnn可以通过上述方法简单的实现,但是多层的双向rnn就不能使将MultiRNNCell传给bidirectional_dynamic_rnn...实际上是依靠dynamic-rnn实现的,如果我们使用MuitiRNNCell的话,那么每层之间不同方向之间交互就被忽略了.所以我们可以自己实现一个工具函数,通过多次调用bidirectional_dynamic_rnn...来实现多层的双向RNN 这是我对多层双向RNN的一个精简版的实现,如有错误,欢迎指出 bidirectional_dynamic_rnn源码一探 上面我们已经看到了正向过程的代码实现,下面来看一下剩下的反向部分的实现
前文《使用Python实现神经网络》和《TensorFlow练习1: 对评论进行分类》都是简单的Feed-forward Neural Networks(FNN/前向反馈神经网络) 。...RNN介绍: Wiki:Recurrent neural network Understanding-LSTMs 循环神经网络(RNN, Recurrent Neural Networks)介绍 唇语识别论文...本帖在MNIST数据集上应用RNN,看看准确率和FNN相比有没有提高。...使用TensorFlow创建RNN # -*- coding:utf-8 -*- import tensorflow as tf import numpy as np # tensorflow自带了MNIST...数据集 from tensorflow.examples.tutorials.mnist import input_data # 下载mnist数据集 mnist = input_data.read_data_sets
我们接下来看看generate_data函数是如何实现的: def generate_data(seq): X = [] y = [] for i in range(len(seq...接下来我们来看看函数lstm_model: def lstm_model(X,y): # 创建深度LSTM,深度为 HIDDEN_SIZE lstm_cell = tf.contrib.rnn.BasicLSTMCell...(HIDDEN_SIZE, state_is_tuple=True) # 将 lstm_cell 变为多层RNN,层数为NUM_LAYERS cell = tf.contrib.rnn.MultiRNNCell...([lstm_cell] * NUM_LAYERS) # 训练rnn,output为输出的结果,_ 返回的是最终的状态 output,_ = tf.nn.dynamic_rnn(cell
由于版本更新关系,从原来的tensorflow低版本到升级到tensorflow1.0以上时,发现有很多API函数变化是很正常的事情,大多碰到的如: 如其中tf.nn.rnn_cell命名空间中的很多函数都发生了命名空间的变化...,如转移到了tf.contrib.rnn.core_rnn_cell。...但是在修改某个程序的时候,发现原来tensorflow.models.rnn.rnn_cell.linear这个函数,居然没有发生转移。...即在tf.contrib.rnn.core_rnn_cell也没有找到。 这个暂时是无解。不过由于这个函数实现的简单的线性求和,因此可以手动在程序中进行修改。...API 的重要更改 TensorFlow/models 被移到了一个单独的 GitHub repository.
双向RNN实际上仅仅是两个独立的RNN放在一起, 本博文将介绍如何在tensorflow中实现双向rnn 单层双向rnn ?...单层双向rnn (cs224d) tensorflow中已经提供了双向rnn的接口,它就是tf.nn.bidirectional_dynamic_rnn()....定义前向和反向rnn_cell 定义前向和反向rnn_cell的初始状态 准备好序列 调用bidirectional_dynamic_rnn import tensorflow as tf from tensorflow.contrib...实际上是依靠dynamic-rnn实现的,如果我们使用MuitiRNNCell的话,那么每层之间不同方向之间交互就被忽略了.所以我们可以自己实现一个工具函数,通过多次调用bidirectional_dynamic_rnn...来实现多层的双向RNN 这是我对多层双向RNN的一个精简版的实现,如有错误,欢迎指出 bidirectional_dynamic_rnn源码一探 上面我们已经看到了正向过程的代码实现,下面来看一下剩下的反向部分的实现
文章目录 循环神经网络(RNN) 示例代码 循环神经网络(RNN) 循环神经网络(Recurrent Neural Network, RNN)是一种适宜于处理序列数据的神经网络,被广泛用于语言模型、文本生成
rnn_cell 水平有限,如有错误,请指正! 本文主要介绍一下 tensorflow.python.ops.rnn_cell 中的一些类和函数,可以为我们编程所用 run_cell....tf_getvariable(), tf.Variables()返回的都是 _ref),但这个 _ref类型经过任何op之后,_ref就会消失 PS: _ref referente-typed is mutable rnn_cell.BasicLSTMCell...这时,是没有variable被创建的, variable在我们 cell(input, state)时才会被创建, 下面所有的类都是这样 rnn_cell.GRUCell() class GRUCell...(RNNCell): def __init__(self, num_units, input_size=None, activation=tanh): 创建一个GRUCell rnn_cell.LSTMCell...(): class MultiRNNCell(RNNCell): def __init__(self, cells, state_is_tuple=True): 用来增加 rnn 的层数 cells
本文定位tensorflow框架初学者以及深度学习基础一般的读者,尽量详细地解读程序中使用到的每一句代码。 本文中代码显示不下的部分,右滑即可浏览。...github.com/hzy46/Char-RNN-TensorFlow 这几个项目都是关于Char-RNN在tensorflow下的实现:1.0版本是Char-RNN的模型作者给出的代码,但是是用lua...基于torch写的;2.0版本是在tensorflow下的实现,通过构建LSTM模型完成了对《安娜卡列宁娜》文本的学习并基于学习成果生成了新的文本;3.0版本在此基础上进行改动,增加了embdding层...,实现对中文的学习与支持。...tf.global_variables_initializer()表示从计算图中初始化所有TensorFlow变量。
什么是RNN 循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)...个性化推荐 1.2 为什么有了CNN,还要RNN?...“通过时间反向传播”,就像穿越时光,这种说法听起来就像是你需要一台时光机来实现这个算法一样。 2....为什么RNN 训练的时候Loss波动很大 由于RNN特有的memory会影响后期其他的RNN的特点,梯度时大时小,learning rate没法个性化的调整,导致RNN在train的过程中,Loss会震荡起伏...实例代码 TensorFlow实现RNN 【机器学习通俗易懂系列文章】 ? ---- 作者:@mantchs GitHub:https://github.com/NLP-LOVE/ML-NLP
上一篇我们介绍了转载|使用PaddleFluid和TensorFlow实现图像分类网络SE_ResNeXt。...这一篇以 NLP 领域的 RNN 语言模型(RNN Language Model,RNN LM)为实验任务,对比如何使用 PaddleFluid 和 TensorFlow 两个平台实现序列模型。...python rnnlm_fluid.py 在终端运行以下命令便可以使用默认结构和默认参数运行 TensorFlow 训练 RNN LM。...不论是 PaddleFluid 以及 TensorFlow 都实现了多种不同的序列建模单元,如何选择使用这些不同的序列建模单元有很大的学问。...接下来的篇章将会继续深入 PaddleFluid 和 TensorFlow 平台的序列模型处理机制,以及更多重要功能如何在两个平台之间实现。 参考文献 [1].
p=15850 在本文中,您将发现如何使用标准深度学习模型(包括多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN))开发,评估和做出预测。...在这种情况下,我们可以看到该模型实现了约94%的分类准确度,然后预测单行数据属于1类的概率为0.9。...RNN在时间序列预测和语音识别方面也取得了一定程度的成功。 RNN最受欢迎的类型是长期短期记忆网络,简称LSTM。...这可以通过将模型保存到文件中,然后加载它并使用它进行预测来实现。 这可以通过使用模型上的save()函数来保存模型来实现。稍后可以使用load_model()函数加载它。...您也可以在MLP,CNN和RNN模型中添加Dropout层,尽管您也可能想探索与CNN和RNN模型一起使用的Dropout的特殊版本。 下面的示例将一个小型神经网络模型拟合为一个合成二进制分类问题。
来源 | CSDN博客作者 | 蒋含竹责编 | 徐威龙 利用循环神经网络RNN可以做各种连续性数据的预测,其中生成古诗词是一件非常有趣的事,特此分享我的学习经验。...另外,我的实现参考了这篇博客,非常感谢这位博主的无私奉献! https://blog.csdn.net/aaronjny/article/details/103806954 ?...导包 import math import re import numpy as np import tensorflow as tf from collections import Counter ?...这样TensorFlow在训练模型时会之间从该数据生成器抽取数据。...模型的构建与训练 3.1 构建模型 现在我们可以开始构建RNN模型了,因为模型层与层之间是顺序的,因此我们可以采用Sequential快速构建模型。
领取专属 10元无门槛券
手把手带您无忧上云