首页
学习
活动
专区
圈层
工具
发布

隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数

隐马尔科夫模型HMM(一)HMM模型

隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率

    隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数

    在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的。在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到。在李航的《统计学习方法》中,这个算法的讲解只考虑了单个观测序列的求解,因此无法用于实际多样本观测序列的模型求解,本文关注于如何使用多个观测序列来求解HMM模型参数。

1. HMM模型参数求解概述

2. 鲍姆-韦尔奇算法原理

3. 鲍姆-韦尔奇算法的推导

    

4. 鲍姆-韦尔奇算法流程总结

    

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com) 

下一篇
举报
领券