首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

八股文之【JVM垃圾回收】

这是jvm第二期,主要讲GC垃圾回收,包括垃圾识别、垃圾回收算法、垃圾回收器,面试必问知识点。

如果识别垃圾

  • 引用计数法(Reference Counting): 对每个对象的引用进行计数,每当有一个地方引用它时计数器 +1、引用失效则 -1,引用的计数放到对象头中,大于 0 的对象被认为是存活对象。虽然循环引用的问题可通过 Recycler 算法解决,但是在多线程环境下,引用计数变更也要进行昂贵的同步操作,性能较低,早期的编程语言会采用此算法。
  • 可达性分析,又称引用链法(Tracing GC): 从 GC Root 开始进行对象搜索,可以被搜索到的对象即为可达对象,此时还不足以判断对象是否存活/死亡,需要经过多次标记才能更加准确地确定,整个连通图之外的对象便可以作为垃圾被回收掉。目前 Java 中主流的虚拟机均采用此算法。

循环引用:当对象A和对象B,相互引用了对方作为自己的成员变量,只有自己销毁的时,才能将成员变量的引用计数减1,因为对象A的销毁依赖于对象B的销毁, 对象B的销毁依赖于对象A的销毁,这样子就造成了循环引用,即使外部没有指针能够访问他们,但是他们依然不能被释放。

垃圾回收算法

  • Mark-Sweep(标记-清除): 统一标记出需要回收的对象,标记完成之后统一回收所有被标记的对象,而由于标记的过程需要遍历所有的GC ROOT,清除的过程也要遍历堆中所有的对象,所以标记-清除算法的效率低下,同时也带来了内存碎片的问题。
  • Copying(复制): 为了解决性能的问题,复制算法应运而生,它将内存分为大小相等的两块区域,每次使用其中的一块,当一块内存使用完之后,将还存活的对象拷贝到另外一块内存区域中,然后把当前内存清空,这样性能和内存碎片的问题得以解决。但是同时带来了另外一个问题,可使用的内存空间缩小了一半! 因此,诞生了我们现在的常见的年轻代+老年代的内存结构:年轻代占1/3,老年代占2/3。年轻代的Eden+S0+S1组成,因为根据IBM的研究显示,98%的对象都是朝生夕死,所以实际上存活的对象并不是很多,完全不需要用到一半内存浪费,所以默认的比例是8:1:1。 这样,在使用的时候只使用Eden区和S0S1中的一个,每次都把存活的对象拷贝另外一个未使用的Survivor区,同时清空Eden和使用的Survivor,这样下来内存的浪费就只有10%了。 如果最后未使用的Survivor放不下存活的对象,这些对象就进入Old老年代了。 PS:所以有一些初级点的问题会问你为什么要分为Eden区和2个Survior区?有什么作用?就是为了节省内存和解决内存碎片的问题,这些算法都是为了解决问题而产生的,如果理解原因你就不需要死记硬背了
  • Mark-Compact (标记-整理): 针对老年代再用复制算法显然不合适,因为进入老年代的对象都存活率比较高了,这时候再频繁的复制对性能影响就比较大,而且也不会再有另外的空间进行兜底。所以针对老年代的特点,通过标记-整理算法,标记出所有的存活对象,让所有存活的对象都向一端移动,然后清理掉边界以外的内存空间。

什么是GCRoot

上面提到的标记的算法,怎么标记一个对象是否存活?简单的通过引用计数法,给对象设置一个引用计数器,每当有一个地方引用他,就给计数器+1,反之则计数器-1,但是这个简单的算法无法解决循环引用的问题。

Java通过可达性分析算法来达到标记存活对象的目的,定义一系列的GC ROOT为起点,从起点开始向下开始搜索,搜索走过的路径称为引用链,当一个对象到GC ROOT没有任何引用链相连的话,则对象可以判定是可以被回收的。

可以作为GC ROOT的包括

  1. 方法区中的静态属性(静态属性指向一个对象)
  2. 方法区的中的常量(常量指向一个对象)
  3. 虚拟机中的局部变量(变量指向一个对象)
  4. 本地方法栈中JNI(native修饰的方法指向的对象)
  5. JavaStack中的引用的对象。
  6. 方法区中静态引用指向的对象。
  7. 方法区中常量引用指向的对象。
  8. Native方法中JNI引用的对象。

垃圾回收器

垃圾回收器其实有很多,

垃圾回收器关系图

图中展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,则说明它们可以搭配使用。虚拟机所处的区域则表示它是属于新生代还是老年代收集器。

  • 新生代收集器:Serial、ParNew、Parallel Scavenge
  • 老年代收集器:CMS、Serial Old、Parallel Old
  • 整堆收集器:G1

垃圾收集器分为分代和分区,趋势是向着分区发展。

分代:

  • ParNew:一款多线程的收集器,采用复制算法,主要工作在 Young 区,可以通过 -XX:ParallelGCThreads 参数来控制收集的线程数,整个过程都是 STW 的,常与 CMS 组合使用。
  • CMS:以获取最短回收停顿时间为目标,采用“标记-清除”算法,分 4 大步进行垃圾收集,其中初始标记和重新标记会 STW ,多数应用于互联网站或者 B/S 系统的服务器端上,JDK9 被标记弃用,JDK14 被删除。

分区:

  • G1: 一种服务器端的垃圾收集器,应用在多处理器和大容量内存环境中,在实现高吞吐量的同时,尽可能地满足垃圾收集暂停时间的要求。
  • ZGC: JDK11 中推出的一款低延迟垃圾回收器,适用于大内存低延迟服务的内存管理和回收,SPECjbb 2015 基准测试,在 128G 的大堆下,最大停顿时间才 1.68 ms,停顿时间远胜于 G1 和 CMS。
  • Shenandoah: 由 Red Hat 的一个团队负责开发,与 G1 类似,基于 Region 设计的垃圾收集器,但不需要 Remember Set 或者 Card Table 来记录跨 Region 引用,停顿时间和堆的大小没有任何关系。停顿时间与 ZGC 接近,下图为与 CMS 和 G1 等收集器的 benchmark。

一些概念:

  • 并行收集:指多条垃圾收集线程并行工作,但此时用户线程仍处于等待状态。
  • 并发收集:指用户线程与垃圾收集线程同时工作(不一定是并行的可能会交替执行)。用户程序在继续运行,而垃圾收集程序运行在另一个CPU上。
  • 吞吐量:即CPU用于运行用户代码的时间与CPU总消耗时间的比值(吞吐量 = 运行用户代码时间 / ( 运行用户代码时间 + 垃圾收集时间 ))。例如:虚拟机共运行100分钟,垃圾收集器花掉1分钟,那么吞吐量就是99%

这篇文章我们主要讲CMS和G1,想了解其他收集器可以参考:https://www.cnblogs.com/chenpt/p/9803298.html。

目前使用最多的是 CMS 和 G1 收集器,二者都有分代的概念。

CMS:

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,基于并发“标记清除”实现,在 标记清理过程中不会导致用户线程无法定位引用对象。仅作用于老年代收集。它的步骤如下:

  1. 初始标记(CMS initial mark):独占CPU,stop-the-world, 仅标记GCroots能直接关联的对象,速度比较快;
  2. 并发标记(CMS concurrent mark):可以和用户线程并发执行,通过GCRoots Tracing 标记所有可达对象;
  3. 重新标记(CMS remark):独占CPU,stop-the-world, 对并发标记阶段用户线程运行产生的垃圾对象进行标记修正,以及更新逃逸对象;
  4. 并发清理(CMS concurrent sweep):可以和用户线程并发执行,清理在重复标记中被标记为可回收的对象。

CMS的优点:

  • 支持并发收集.
  • 低停顿,因为CMS可以控制将耗时的两个stop-the-world操作保持与用户线程恰当的时机并发执行,并且能保证在短时间执行完成,这样就达到了近似并发的目的.

CMS的缺点:

  • CMS收集器对CPU资源非常敏感,在并发阶段虽然不会导致用户线程停顿,但是会因为占用了一部分CPU资源,如果在CPU资源不足的情况下应用会有明显的卡顿。
  • 无法处理浮动垃圾:在执行‘并发清理’步骤时,用户线程也会同时产生一部分可回收对象,但是这部分可回收对象只能在下次执行清理是才会被回收。如果在清理过程中预留给用户线程的内存不足就会出现‘Concurrent Mode Failure’,一旦出现此错误时便会切换到SerialOld收集方式。
  • CMS清理后会产生大量的内存碎片,当有不足以提供整块连续的空间给新对象/晋升为老年代对象时又会触发FullGC。且在1.9后将其废除。

使用场景

它关注的是垃圾回收最短的停顿时间(低停顿),在老年代并不频繁GC的场景下,是比较适用的。

G1:

G1作为JDK9之后的服务端默认收集器,且不再区分年轻代和老年代进行垃圾回收,他把内存划分为多个Region,每个Region的大小可以通过-XX:G1HeapRegionSize设置,大小为1~32M,对于大对象的存储则衍生出Humongous的概念,超过Region大小一半的对象会被认为是大对象,而超过整个Region大小的对象被认为是超级大对象,将会被存储在连续的N个Humongous Region中,G1在进行回收的时候会在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间优先回收收益最大的Region。

G1的回收过程分为以下四个步骤:

  1. 初始标记:标记GC ROOT能关联到的对象,需要STW
  2. 并发标记:从GCRoots的直接关联对象开始遍历整个对象图的过程,扫描完成后还会重新处理并发标记过程中产生变动的对象
  3. 最终标记:短暂暂停用户线程,再处理一次,需要STW
  4. 筛选回收:更新Region的统计数据,对每个Region的回收价值和成本排序,根据用户设置的停顿时间制定回收计划。再把需要回收的Region中存活对象复制到空的Region,同时清理旧的Region。需要STW

总的来说除了并发标记之外,其他几个过程也还是需要短暂的STW,G1的目标是在停顿和延迟可控的情况下尽可能提高吞吐量。

特点

  • 并行与并发:G1充分发挥多核性能,使用多CPU来缩短Stop-The-world的时间,
  • 分代收集:G1能够自己管理不同分代内已创建对象和新对象的收集。
  • 空间整合:G1从整体上来看是基于‘标记-整理’算法实现,从局部(相关的两块Region)上来看是基于‘复制’算法实现,这两种算法都不会产生内存空间碎片。
  • 可预测的停顿:它可以自定义停顿时间模型,可以指定一段时间内消耗在垃圾回收商的时间不大于预期设定值。

G1 GC切分堆内存为多个区间(Region),从而避免很多GC操作在整个Java堆或者整个年轻代进行。G1 GC只关注你有没有存货对象,都会被回收并放入可用的Region队列。G1 GC是基于Region的GC,适用于大内存机器。即使内存很大,Region扫描,性能还是很高的。

https://zhuanlan.zhihu.com/p/161204689

ZGC

ZGC收集器是一款基于Region内存布局的,(暂时)不设分代的,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记-整理算法的,以低延迟为首要目标的一款垃圾收集器。希望能在尽可能对吞吐量影响不太大的前提下,实现在任意堆内存大小下都可以把垃圾收集的停顿时间限制在10ms以内的低延迟。

JDK11 中推出的一款低延迟垃圾回收器,适用于大内存低延迟服务的内存管理和回收,SPECjbb 2015 基准测试,在 128G 的大堆下,最大停顿时间才 1.68 ms,停顿时间远胜于 G1 和 CMS。

下一篇
举报
领券