首页
学习
活动
专区
圈层
工具
发布
1
机器学习实战 | Python机器学习算法应用实践
2
机器学习实战 | SKLearn入门与简单应用案例
3
机器学习实战 | SKLearn最全应用指南
4
机器学习实战 | XGBoost建模应用详解
5
机器学习实战 | LightGBM建模应用详解
6
机器学习实战 | 综合项目-电商销量预估
7
机器学习实战 | 综合项目-电商销量预估进阶方案
8
机器学习实战 | 机器学习特征工程最全解读
9
机器学习实战 | 自动化特征工程工具Featuretools应用
10
机器学习实战 | AutoML自动化机器学习建模
11
图数据挖掘!使用图分析+AI进行保险欺诈检测 ⛵
12
20 行代码!带你快速构建基础文本搜索引擎 ⛵
13
员工离职困扰?来看AI如何解决,基于人力资源分析的 ML 模型构建全方案 ⛵
14
AI 音辨世界:艺术小白的我,靠这个AI模型,速识音乐流派选择音乐 ⛵
15
钻石价格预测的ML全流程!从模型构建调优道部署应用!⛵
16
二手车价格预测 | 构建AI模型并部署Web应用 ⛵
17
毫秒级!千万人脸库快速比对,上亿商品图片检索,背后的极速检索用了什么神器? ⛵
18
机器学习模型太慢?来看看英特尔(R) 扩展加速 ⛵
19
全自动化机器学习建模!效果吊打初级炼丹师! ⛵
20
机器学习建模高级用法!构建企业级AI建模流水线 ⛵
21
2022了你还不会『低代码』?数据科学也能玩转Low-Code啦! ⛵
22
AI带你省钱旅游!精准预测民宿房源价格!
23
精准营销!用机器学习完成客户分群!⛵
24
2022极端高温!机器学习如何预测森林火灾?⛵ 万物AI
25
2022年Python顶级自动化特征工程框架⛵
26
AI医疗高精尖!基于AI的新药研发!⛵
27
数据驱动!精细化运营!用机器学习做客户生命周期与价值预估!⛵
28
2022!影响百万用户金融信用评分,Equifax被告上法庭,罪魁祸首——『数据漂移』!⛵
29
精准用户画像!商城用户分群2.0!⛵
30
代码案例详解!如何让机器学习模型自解释!⛵
31
whylogs工具库的工业实践!机器学习模型流程与效果监控 ⛵
32
一文读懂!异常检测全攻略!从统计方法到机器学习 ⛵
33
图解来啦!机器学习工业部署最佳实践!10分钟上手机器学习部署与大规模扩展 ⛵
34
『航班乘客满意度』场景数据分析建模与业务归因解释 ⛵
35
全都会!预测蛋白质标注!创建讲义!解释数学公式!最懂科学的智能NLP模型Galactica尝鲜 ⛵
36
深度解析数据清理和特征工程!5本面向数据科学家的顶级书籍推荐 ⛵
37
就离谱!使用机器学习预测2022世界杯:小组赛挺准,但冠亚季军都错了 ⛵

2022年Python顶级自动化特征工程框架⛵

特征工程一般是手动完成,不仅依赖于工程师的丰富经验,也非常耗时。因此『自动化特征工程』可以自动生成大量候选特征,帮助数据科学家显著提升了工作效率和模型效果。


💡 作者:韩信子@ShowMeAI 📘 机器学习实战系列:https://www.showmeai.tech/tutorials/41 📘 本文地址:https://www.showmeai.tech/article-detail/328 📢 声明:版权所有,转载请联系平台与作者并注明出处 📢 收藏ShowMeAI查看更多精彩内容

特征工程(feature engineering)指的是:利用领域知识和现有数据,创造出新的特征,用于机器学习算法。

  • 特征:数据中抽取出来的对结果预测有用的信息。
  • 特征工程:使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

在业界有一个很流行的说法:数据与特征工程决定了模型的上限,改进算法只不过是逼近这个上限而已。

特征工程的目的是提高机器学习模型的整体性能,以及生成最适合用于机器学习的算法的输入数据集。

关于特征工程的各种方法详解,欢迎大家阅读 ShowMeAI 整理的特征工程解读教程。机器学习实战 | 机器学习特征工程全面解读

💡 自动化特征工程

在很多生产项目中,特征工程都是手动完成的,而且它依赖于先验领域知识、直观判断和数据操作。整个过程是非常耗时的,并且场景或数据变换后又需要重新完成整个过程。而『自动化特征工程』希望对数据集处理自动生成大量候选特征来帮助数据科学家和工程师们,可以选择这些特征中最有用的进行进一步加工和训练。

自动化特征工程是很有意义的一项技术,它能使数据科学家将更多时间花在机器学习的其他环节上,从而提高工作效率和效果。

在本篇内容中,ShowMeAI将总结数据科学家在 2022 年必须了解的 Python 中最流行的自动化特征工程框架。

  • Feature Tools
  • TSFresh
  • Featurewiz
  • PyCaret

💡 Feature Tools

📌 简介

📘Featuretools是一个用于执行自动化特征工程的开源库。 ShowMeAI在文章 机器学习实战 | 自动化特征工程工具Featuretools应用 中也对它做了介绍。

要了解 Featuretools,我们需要了解以下三个主要部分:

  • Entities
  • Deep Feature Synthesis (DFS)
  • Feature primitives

在 Featuretools 中,我们用 Entity 来囊括原本 Pandas DataFrame 的内容,而 EntitySet 由不同的 Entity 组合而成。

Featuretools 的核心是 Deep Feature Synthesis(DFS) ,它实际上是一种特征工程方法,它能从单个或多个 DataFrame中构建新的特征。

DFS 通过 EntitySet 上指定的 Feature primitives 创建特征。例如,primitives中的mean函数将对变量在聚合时进行均值计算。

📌 使用示例

💦 ① 数据与预处理

以下示例转载自 📘官方快速入门。

代码语言:python
代码运行次数:0
复制
# 安装
# pip install featuretools

import featuretools as ft
data = ft.demo.load_mock_customer()

# 载入数据集
customers_df = data["customers"]
customers_df
代码语言:python
代码运行次数:0
复制
sessions_df = data["sessions"]
sessions_df.sample(5)
代码语言:python
代码运行次数:0
复制
transactions_df = data["transactions"]
transactions_df.sample(5)

下面我们指定一个包含数据集中每个 DataFrame 的字典,如果数据集有索引index列,我们会和 DataFrames 一起传递,如下图所示。

代码语言:python
代码运行次数:0
复制
dataframes = {
    "customers": (customers_df, "customer_id"),
    "sessions": (sessions_df, "session_id", "session_start"),
    "transactions": (transactions_df, "transaction_id", "transaction_time"),
}

接下来我们定义 DataFrame 之间的连接。在这个例子中,我们有两个关系:

代码语言:python
代码运行次数:0
复制
relationships = [
    ("sessions", "session_id", "transactions", "session_id"),
    ("customers", "customer_id", "sessions", "customer_id"),
]

💦 ② 深度特征合成

接下来我们可以通过DFS生成特征了,它需要『DataFrame 的字典』、『Dataframe关系列表』和『目标 DataFrame 名称』3个基本输入。

代码语言:python
代码运行次数:0
复制
feature_matrix_customers, features_defs = ft.dfs(
    dataframes=dataframes,
    relationships=relationships,
    target_dataframe_name="customers",
)

feature_matrix_customers

比如我们也可以以sessions为目标dataframe构建新特征。

代码语言:python
代码运行次数:0
复制
feature_matrix_sessions, features_defs = ft.dfs( dataframes=dataframes, relationships=relationships, target_dataframe_name="sessions"
)
feature_matrix_sessions.head(5)

💦 ③ 特征输出

Featuretools不仅可以完成自动化特征生成,它还可以对生成的特征可视化,并说明Featuretools 生成它的方法。

代码语言:python
代码运行次数:0
复制
feature = features_defs[18]
feature

💡 TSFresh

📌 简介

📘TSFresh 是一个开源 Python 工具库,有着强大的时间序列数据特征抽取功能,它应用统计学、时间序列分析、信号处理和非线性动力学的典型算法与可靠的特征选择方法,完成时间序列特征提取。

TSFresh 自动从时间序列中提取 100 个特征。 这些特征描述了时间序列的基本特征,例如峰值数量、平均值或最大值或更复杂的特征,例如时间反转对称统计量。

📌 使用示例

代码语言:python
代码运行次数:0
复制
# 安装
# pip install tsfresh

# 数据下载
from tsfresh.examples.robot_execution_failures import download_robot_execution_failures, load_robot_execution_failures

download_robot_execution_failures()
timeseries, y = load_robot_execution_failures()

# 特征抽取
from tsfresh import extract_features
extracted_features = extract_features(timeseries, column_id="id", column_sort="time")

💡 Featurewiz

📌 简介

Featurewiz 是另外一个非常强大的自动化特征工程工具库,它结合两种不同的技术,共同帮助找出最佳特性:

💦 ① SULOV

Searching for the uncorrelated list of variables:这个方法会搜索不相关的变量列表来识别有效的变量对,它考虑具有最低相关性和最大 MIS(互信息分数)评级的变量对并进一步处理。

💦 ② 递归 XGBoost

上一步SULOV中识别的变量递归地传递给 XGBoost,通过xgboost选择和目标列最相关的特征,并组合它们,作为新的特征加入,不断迭代这个过程,直到生成所有有效特征。

📌 使用示例

简单的使用方法示例代码如下:

代码语言:python
代码运行次数:0
复制
from featurewiz import FeatureWiz
features = FeatureWiz(corr_limit=0.70, feature_engg='', category_encoders='', dask_xgboost_flag=False, nrows=None, verbose=2)
X_train_selected = features.fit_transform(X_train, y_train)
X_test_selected = features.transform(X_test)
features.features  # 选出的特征列表 #

# 自动化特征工程构建特征
import featurewiz as FW
outputs = FW.featurewiz(dataname=train, target=target, corr_limit=0.70, verbose=2, sep=',', 
                header=0, test_data='',feature_engg='', category_encoders='',
                dask_xgboost_flag=False, nrows=None)

💡 PyCaret

📌 简介

📘PyCaret是 Python 中的一个开源、低代码机器学习库,可自动执行机器学习工作流。它是一个端到端的机器学习和模型管理工具,可加快实验周期并提高工作效率。

与本文中的其他框架不同,PyCaret 不是一个专用的自动化特征工程库,但它包含自动生成特征的功能。

📌 使用示例

代码语言:python
代码运行次数:0
复制
# 安装
# pip install pycaret

# 加载数据
from pycaret.datasets import get_data
insurance = get_data('insurance')

# 初始化设置
from pycaret.regression import *
reg1 = setup(data = insurance, target = 'charges', feature_interaction = True, feature_ratio = True)

参考资料

下一篇
举报
领券