目标检测(物体检测, Object Detection) 专知荟萃
- 入门学习
- 进阶文章
- 综述
- Tutorial
- 视频教程
- 代码
- 领域专家
入门学习
- 图像目标检测(Object Detection)原理与实现 (1-6)
- [http://www.voidcn.com/article/p-xnjyqlkj-ua.html]
- [http://www.voidcn.com/article/p-ypylfzuk-ua.html]
- [http://www.voidcn.com/article/p-pfihszbt-ua.html]
- [http://www.voidcn.com/article/p-hcvjcaqy-ua.html]
- [http://www.voidcn.com/article/p-kjogyjfz-ua.html]
- [http://www.voidcn.com/article/p-zqfjjomb-u.html]
- . 基于特征共享的高效物体检测 Faster R-CNN和ResNet的作者任少卿 博士毕业论文 中文
- [https://pan.baidu.com/s/1gfxTbNl]
- R-CNN:论文笔记
- [http://www.cnblogs.com/kingstrong/p/4969472.html], [http://blog.gater.vip/articles/2015/11/02/1478607351098.html]
- Fast-RCNN:
- 深度学习物体检测(三)——FAST-RCNN:
- [http://www.itwendao.com/article/detail/374785.html]
- Fast-RCNN:[https://zhuanlan.zhihu.com/p/24780395]
- Faster-RCNN:
- [http://blog.csdn.net/zy1034092330/article/details/62044941]
- FPN:
- Feature Pyramid Networks for Object Detection 论文笔记:
- [http://blog.csdn.net/jesse_mx/article/details/54588085]
- CVPR 2017论文解读:特征金字塔网络FPN:
- [http://www.sohu.com/a/159780794_465975]
- FPN(feature pyramid networks)算法讲解:
- [http://blog.csdn.net/u014380165/article/details/72890275]
- R-FCN:
- 基于区域的全卷积网络来检测物体:
- [http://blog.csdn.net/shadow_guo/article/details/51767036]
- [译] 基于R-FCN的物体检测:
- [http://www.jianshu.com/p/db1b74770e52]
- SSD:
- Single Shot MultiBox Detector论文阅读:
- [http://blog.csdn.net/u010167269/article/details/52563573]
- 【深度学习:目标检测】RCNN学习笔记(10):SSD:Single Shot MultiBox Detector:
- [http://blog.csdn.net/smf0504/article/details/52745070]
- 翻译SSD论文(Single Shot MultiBox Detector),仅作交流:
- [http://blog.csdn.net/Ai_Smith/article/details/52997456?locationNum=2&fps=1]
- CNN目标检测与分割(三):SSD详解:
- [http://blog.csdn.net/zy1034092330/article/details/72862030]
- SSD关键源码解析:
- [https://zhuanlan.zhihu.com/p/25100992]
- YOLO:
- YOLO:实时快速目标检测:
- [https://zhuanlan.zhihu.com/p/25045711]
- YOLO详解: [https://zhuanlan.zhihu.com/p/25236464]
- YOLO升级版:YOLOv2和YOLO9000解析:
- [https://zhuanlan.zhihu.com/p/29816334]
- YOLO升级版:YOLOv2和YOLO9000解析:
- [https://zhuanlan.zhihu.com/p/29816334]
- YOLO v2之总结篇(linux+windows):
- [http://blog.csdn.net/qq_14845119/article/details/53589282]
- YOLOv2 论文笔记:
- [http://blog.csdn.net/jesse_mx/article/details/53925356]
- DenseBox:余凯特邀报告:基于密集预测图的物体检测技术造就全球领先的ADAS系统
- PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection - [http://www.cnblogs.com/xueyuxiaolang/p/5959442.html]
- 深度学习论文笔记:DSSD - [http://jacobkong.github.io/posts/2938514597/]
- DSOD
- 复旦大学Ph.D沈志强:用于目标检测的DSOD模型(ICCV 2017) | 分享总结:
- [http://www.sohu.com/a/198226907_114877]
- 目标检测--DSOD: Learning Deeply Supervised Object Detectors from Scratch:
- [http://blog.csdn.net/zhangjunhit/article/details/77247695]
- Focal Loss:
- Focal Loss:
- [http://blog.csdn.net/u014380165/article/details/77019084]
- 读Focal Loss:
- [https://zhuanlan.zhihu.com/p/28873248]
- Soft-NMS:
- 一行代码改进NMS:
- [http://blog.csdn.net/shuzfan/article/details/71036040]
- OHEM:
- 论文笔记 OHEM: Training Region-based Object Detectors with Online Hard Example Mining:
- [http://blog.csdn.net/u012905422/article/details/52760669]
- Mask-RCNN 2017:
- Mask-RCNN 2017:
- [http://blog.csdn.net/inuchiyo_china/article/details/70860939]
- 目标检测分割--Mask R-CNN:
- [http://blog.csdn.net/zhangjunhit/article/details/64920075?locationNum=6&fps=1]
- 解读|Facebook 何凯明发大招:Mask R-CNN 狙击目标实例分割:
- [http://www.sohu.com/a/130676187_642762]
- 目标检测之比较
- 目标检测之RCNN,SPP-NET,Fast-RCNN,Faster-RCNN:
- [http://lanbing510.info/2017/08/24/RCNN-FastRCNN-FasterRCNN.html]
- RCNN, Fast-RCNN, Faster-RCNN的一些事:
- [http://closure11.com/rcnn-fast-rcnn-faster-rcnn%E7%9A%84%E4%B8%80%E4%BA%9B%E4%BA%8B/]
- 机器视觉目标检测补习贴之R-CNN系列 — R-CNN, Fast R-CNN, Faster R-CNN , 目标检测补习贴之YOLO实时检测, You only look once :
- [http://nooverfit.com/wp/]
- 目标检测算法:RCNN、YOLO vs DPM:
- [https://juejin.im/entry/59564e1f6fb9a06b9c7408f9]
- 如何评价rcnn、fast-rcnn和faster-rcnn这一系列方法?:
- [https://www.zhihu.com/question/35887527]
- 视觉目标检测和识别之过去,现在及可能
- [https://zhuanlan.zhihu.com/p/27546796]
进阶文章
- Deep Neural Networks for Object Detection (基于DNN的对象检测)NIPS2013:
- [https://cis.temple.edu/~yuhong/teach/2014_spring/papers/NIPS2013_DNN_OD.pdf]
- R-CNN Rich feature hierarchies for accurate object detection and semantic segmentation:
- [https://arxiv.org/abs/1311.2524]
- Fast R-CNN :
- [http://arxiv.org/abs/1504.08083]
- Faster R-CNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks:
- [http://arxiv.org/abs/1506.01497]
- Scalable Object Detection using Deep Neural Networks
- [http://arxiv.org/abs/1312.2249]
- Scalable, High-Quality Object Detection
- [http://arxiv.org/abs/1412.1441]
- SPP-Net Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
- [http://arxiv.org/abs/1406.4729]
- DeepID-Net DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
- [http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html]
- Object Detectors Emerge in Deep Scene CNNs
- [http://arxiv.org/abs/1412.6856]
- segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
- [https://arxiv.org/abs/1502.04275]
- Object Detection Networks on Convolutional Feature Maps
- [http://arxiv.org/abs/1504.06066]
- Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
- [http://arxiv.org/abs/1504.03293]
- DeepBox: Learning Objectness with Convolutional Networks
- [http://arxiv.org/abs/1504.03293]
- Object detection via a multi-region & semantic segmentation-aware CNN model
- [http://arxiv.org/abs/1505.01749]
- You Only Look Once: Unified, Real-Time Object Detection
- [http://arxiv.org/abs/1506.02640]
- YOLOv2 YOLO9000: Better, Faster, Stronger
- [https://arxiv.org/abs/1612.08242]
- AttentionNet: Aggregating Weak Directions for Accurate Object Detection
- [http://arxiv.org/abs/1506.07704]
- DenseBox: Unifying Landmark Localization with End to End Object Detection
- [http://arxiv.org/abs/1509.04874]
- SSD: Single Shot MultiBox Detector
- [http://arxiv.org/abs/1512.02325]
- DSSD : Deconvolutional Single Shot Detector
- [https://arxiv.org/abs/1701.06659]
- G-CNN: an Iterative Grid Based Object Detector
- [http://arxiv.org/abs/1512.07729]
- HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
- [http://arxiv.org/abs/1604.00600]
- A MultiPath Network for Object Detection
- [http://arxiv.org/abs/1604.02135]
- R-FCN: Object Detection via Region-based Fully Convolutional Networks
- [http://arxiv.org/abs/1605.06409]
- A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
- [http://arxiv.org/abs/1607.07155]
- PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
- [http://arxiv.org/abs/1608.08021]
- Feature Pyramid Networks for Object Detection
- [https://arxiv.org/abs/1612.03144]
- Learning Chained Deep Features and Classifiers for Cascade in Object Detection
- [https://arxiv.org/abs/1702.07054]
- DSOD: Learning Deeply Supervised Object Detectors from Scratch
- [https://arxiv.org/abs/1708.01241]
- Focal Loss for Dense Object Detection ICCV 2017 Best student paper award. Facebook AI Research
- [https://arxiv.org/abs/1708.02002]
- Mask-RCNN 2017 ICCV 2017 Best paper award. Facebook AI Research
- http://arxiv.org/abs/1703.06870
综述
- 深度学习之 "物体检测" 方法梳理
- [http://zhwhong.ml/2017/02/24/Detection-CNN/]
- 地平线黄李超开讲:深度学习和物体检测!:
- [http://www.sohu.com/a/163460329_642762]
- 对话CVPR2016:目标检测新进展:
- [https://zhuanlan.zhihu.com/p/21533724]
- 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN:
- [http://www.cnblogs.com/skyfsm/p/6806246.html]
- 基于深度学习的目标检测研究进展
- 讲堂干货No.1|山世光-基于深度学习的目标检测技术进展与展望
Tutorial
- CVPR'17 Tutorial Deep Learning for Objects and Scenes by Kaiming He Ross Girshick
- [http://deeplearning.csail.mit.edu/]
- ICCV 2015 Tools for Efficient Object Detection
- [http://mp7.watson.ibm.com/ICCV2015/ObjectDetectionICCV2015.html]
- Object Detection
- [http://class.inrialpes.fr/tutorials/triggs-icvss1.pdf]
- Image Recognition and Object Detection : Part 1
- [https://www.learnopencv.com/image-recognition-and-object-detection-part1/]
- R-CNN for Object Detection
- [https://courses.cs.washington.edu/courses/cse590v/14au/cse590v_wk1_rcnn.pdf\]
视频教程
- cs231 第11讲 Detection and Segmentation
- PPT :[http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf\] 视频:[https://www.youtube.com/watch?v=nDPWywWRIRo&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv]
- Deep Learning for Instance-level Object Understanding by Ross Girshick.
- PPT:[http://deeplearning.csail.mit.edu/instance_ross.pdf\]
- 视频:[https://youtu.be/jHv37mKAhV4?t=2349]
代码
- R-CNN
- [https://github.com/rbgirshick/rcnn]
- Fast R-CNN:
- [https://github.com/rbgirshick/fast-rcnn]
- github("Fast R-CNN in MXNet"): https://github.com/precedenceguo/mx-rcnn
- github: https://github.com/mahyarnajibi/fast-rcnn-torch
- github: https://github.com/apple2373/chainer-simple-fast-rnn
- github: https://github.com/zplizzi/tensorflow-fast-rcnn
- Faster R-CNN
- github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
- github: https://github.com/rbgirshick/py-faster-rcnn
- github: https://github.com/mitmul/chainer-faster-rcnn
- github: https://github.com/andreaskoepf/faster-rcnn.torch
- github: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
- github: https://github.com/smallcorgi/Faster-RCNN_TF
- github: https://github.com/CharlesShang/TFFRCNN
- github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
- github: https://github.com/yhenon/keras-frcnn
- SPP-Net
- [https://github.com/ShaoqingRen/SPP_net\]
- YOLO
- github: https://github.com/gliese581gg/YOLO_tensorflow
- github: https://github.com/xingwangsfu/caffe-yolo
- github: https://github.com/frankzhangrui/Darknet-Yolo
- github: https://github.com/BriSkyHekun/py-darknet-yolo
- github: https://github.com/tommy-qichang/yolo.torch
- github: https://github.com/frischzenger/yolo-windows
- github: https://github.com/AlexeyAB/yolo-windows
- github: https://github.com/nilboy/tensorflow-yolo
- YOLOv2
- github(Chainer): https://github.com/leetenki/YOLOv2
- github(Keras): https://github.com/allanzelener/YAD2K
- github(PyTorch): https://github.com/longcw/yolo2-pytorch
- github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
- github(Windows): https://github.com/AlexeyAB/darknet
- github: https://github.com/choasUp/caffe-yolo9000
- github: https://github.com/philipperemy/yolo-9000
- SSD
- github: https://github.com/zhreshold/mxnet-ssd
- github: https://github.com/zhreshold/mxnet-ssd.cpp
- github: https://github.com/rykov8/ssd_keras
- github: https://github.com/balancap/SSD-Tensorflow
- github: https://github.com/amdegroot/ssd.pytorch
- github(Caffe): https://github.com/chuanqi305/MobileNet-SSD
- Recurrent Scale Approximation for Object Detection in CNN
- [https://github.com/sciencefans/RSA-for-object-detection]
- Mask-RCNN 2017
- Keras [https://github.com/matterport/Mask_RCNN\]
- TensorFlow [https://github.com/CharlesShang/FastMaskRCNN]
- Pytorch [https://github.com/felixgwu/mask_rcnn_pytorch\]
- caffe [https://github.com/jasjeetIM/Mask-RCNN]
- MXNet [https://github.com/TuSimple/mx-maskrcnn]
领域专家
- Ross Girshick (rbg 大神)
- [http://www.rossgirshick.info/]
- Kaiming He, Facebook人工智能实验室科学家Kaiming He
- Shaoqing Ren
- [http://shaoqingren.com/]
- Jian Sun
- [http://www.jiansun.org/]