首页
学习
活动
专区
圈层
工具
发布
49 篇文章
1
YARN
2
Hadoop前世今生
3
AI分类
4
人工智能综述
5
随机森林
6
【HBase】HBase之what
7
【HBase】HBase之how
8
HBase篇--HBase常用优化
9
Hbase优化
10
flink源码从头分析第一篇之WordCount DataStream操作
11
大数据Flink-Java学习之旅第一篇
12
flink(12)-flink on yarn
13
Flink学习——Flink概述
14
Flink学习笔记:2、Flink介绍
15
Flink学习笔记(2) -- Flink部署
16
Flink入门(一)——Apache Flink介绍
17
Flink1.4 Flink程序剖析
18
Flink SQL 优化实战 - 维表 JOIN 优化
19
flink sql 知其所以然(十四):维表 join 的性能优化之路(上)附源码
20
Flink重点难点:维表关联理论和Join实战
21
Flink重点难点:状态(Checkpoint和Savepoint)容错与两阶段提交
22
详解flink中Look up维表的使用
23
Flink 1.11中对接Hive新特性及如何构建数仓体系
24
Flink 实时计算 - SQL 维表 Join 的实现
25
大数据技术周报第 010 期
26
实时数仓在有赞的实践
27
美团基于 Flink 的实时数仓平台建设新进展
28
基于Flink+Hive构建流批一体准实时数仓
29
实时数仓:基于流计算 Oceanus 实现 MySQL 和 HBase 维表到 ClickHouse 的实时分析
30
当 TiDB 与 Flink 相结合:高效、易用的实时数仓
31
flink维表关联系列之Mysql维表关联:全量加载
32
基于Flink的高可靠实时ETL系统
33
基于 Flink 实现的商品实时推荐系统(附源码)
34
【Flink】基于 Flink 的流式数据实时去重
35
Flink 实战 | 贝壳找房基于Flink的实时平台建设
36
Apache Hudi在华米科技的应用-湖仓一体化改造
38
Flink checkpoint
39
理解Flink checkpoint
40
flink checkpoint配置整理
41
flink checkpoint 源码分析 (二)
42
聊聊flink的checkpoint配置
43
Flink中案例学习--State与CheckPoint
44
Flink源码阅读(一)--Checkpoint触发机制
45
Flink企业级优化全面总结(3万字长文,15张图)
46
Flink高频面试题,附答案解析
47
学习Flink,看这篇就够了
48
【最全的大数据面试系列】Flink面试题大全
49
Flink SQL Client综合实战

大数据技术周报第 010 期

这里记录过去一周,大数据相关值得分享的东西,每周日发布。

国庆假快乐(^▽^),这是第 10 期分享。

技术一瞥

1.Flink 最近发布 1.14.0 版本

  • https://flink.apache.org/news/2021/09/29/release-1.14.0.html[1]

The Apache Software Foundation recently released its annual report and Apache Flink once again made it on the list of the top 5 most active projects! This remarkable activity also shows in the new 1.14.0 release. Once again, more than 200 contributors worked on over 1,000 issues. We are proud of how this community is consistently moving the project forward.

文章

本周推荐文章

1、顺丰科技 Hudi on Flink 实时数仓实践本文作者刘杰,介绍了顺丰科技数仓的架构,趟过的一些问题、使用 Hudi 来优化整个 job 状态的实践细节,以及未来的一些规划。主要内容为:

  1. 数仓架构
  2. Hudi 代码躺过的坑
  3. 状态优化
  4. 未来规划

2、浅谈 RocketMQ、Kafka、Pulsar 的事务消息事务是一个程序执行单元,里面的所有操作要么全部执行成功,要么全部执行失败。RocketMQ、Kafka 和 Pulsar 都是当今业界应用十分广泛的开源消息队列(MQ)组件,笔者在工作中遇到关于 MQ 选型相关的内容,了解到关于“事务消息”这个概念在不同的 MQ 组件里有不同内涵。故借此文,试着浅析一番这三种消息队列(MQ)的事务消息有何异同,目的是形成关于消息队列事务消息的全景视图,给有类似业务需求的同学提供一些参考和借鉴。

3、Clickhouse的实践之路(58技术)在数据量日益增长的当下,传统数据库的查询性能已满足不了我们的业务需求。而Clickhouse在OLAP领域的快速崛起引起了我们的注意,于是我们引入Clickhouse并不断优化系统性能,提供高可用集群环境。本文主要讲述如何通过Clickhouse结合大数据生态来定制一套完善的数据分析方案、如何打造完备的运维管理平台以降低维护成本,并结合具体案例说明Clickhouse的实践过程。

资源

1、flinkStreamSQL[2]

  • 基于开源的flink,对其实时sql进行扩展
    • 自定义create table 语法(包括源表,输出表,维表)
    • 自定义create view 语法
    • 自定义create function 语法
    • 实现了流与维表的join
    • 支持原生FlinkSQL所有的语法
    • 扩展了输入和输出的性能指标到Task metrics

2、https://github.com/heibaiying/BigData-Notes[3]

不保证内容内容质量,获取自己觉得有价值的内容就可以了。

参考资料

[1]

https://flink.apache.org/news/2021/09/29/release-1.14.0.html: https://flink.apache.org/news/2021/09/29/release-1.14.0.html

[2]

flinkStreamSQL: https://github.com/DTStack/flinkStreamSQL

[3]

https://github.com/heibaiying/BigData-Notes: https://github.com/heibaiying/BigData-Notes

下一篇
举报
领券