首页
学习
活动
专区
圈层
工具
发布
36 篇文章
1
数据分析大作战,SQL V.S. Python,来看看这些考题你都会吗 ⛵
2
数据科学手把手:碳中和下的二氧化碳排放分析 ⛵
3
面试现场!月薪3w+的这些数据挖掘SQL面试题你都掌握了吗? ⛵
4
员工离职困扰?来看AI如何解决,基于人力资源分析的 ML 模型构建全方案 ⛵
5
AI 音辨世界:艺术小白的我,靠这个AI模型,速识音乐流派选择音乐 ⛵
6
数据专家最常使用的 10 大类 Pandas 函数 ⛵
7
钻石价格预测的ML全流程!从模型构建调优道部署应用!⛵
8
掌握这9个单行代码技巧!你也能写出『高端』Python代码 ⛵
9
刘畊宏男孩女孩看过来!运动数据分析挖掘!⛵
10
二手车价格预测 | 构建AI模型并部署Web应用 ⛵
11
看看你离世界一流大厂有多远?3道Google最新SQL面试题 ⛵
12
客户流失?来看看大厂如何基于spark+机器学习构建千万数据规模上的用户留存模型 ⛵
13
再见 Excel,你好 Python Spreadsheets! ⛵
14
羡慕 Excel 的高级选择与文本框颜色呈现?Pandas 也可以拥有!! ⛵
15
2022了你还不会『低代码』?数据科学也能玩转Low-Code啦! ⛵
16
Pandas数据显示不全?快来了解这些设置技巧! ⛵
17
一键自动化数据分析!快来看看 2022 年最受欢迎的 Python 宝藏工具库! ⛵
18
羡慕实时数据看板?来看看Python的交互数据分析可视化工具!
19
自动化运维?看看Python怎样完成自动任务调度⛵
20
森林野火故事2.0:一眼看穿!使用 Panel 和 hvPlot 可视化 ⛵
21
异常值检测!最佳统计方法实践(代码实现)!⛵
22
大数据开发!Pandas转spark无痛指南!⛵
23
还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
24
业务数据分析最佳案例!旅游业数据分析!⛵
25
Pandas中你一定要掌握的时间序列相关高级功能 ⛵
26
求职指南!给数据开发的SQL面试准备路径!⛵
27
Python中内置数据库!SQLite使用指南! ⛵
28
私藏!资深数据专家SQL效率优化技巧 ⛵
29
Pandas太慢?快使用Vaex DataFrame,每秒数亿数据算起来 ⛵
30
高手系列!数据科学家私藏pandas高阶用法大全 ⛵
31
『航班乘客满意度』场景数据分析建模与业务归因解释 ⛵
32
数据科学家赚多少?基于pandasql和plotly的薪资分析与可视化 ⛵
33
深度解析数据清理和特征工程!5本面向数据科学家的顶级书籍推荐 ⛵
34
就离谱!使用机器学习预测2022世界杯:小组赛挺准,但冠亚季军都错了 ⛵
35
百倍加速IO读写!快使用Parquet和Feather格式!⛵
36
交互式仪表板!Python轻松完成!⛵

Pandas数据显示不全?快来了解这些设置技巧! ⛵

? 作者:韩信子@ShowMeAI ? 数据分析实战系列:http://www.showmeai.tech/tutorials/40 ? 本文地址:http://www.showmeai.tech/article-detail/285 ? 声明:版权所有,转载请联系平台与作者并注明出处 ? 收藏ShowMeAI查看更多精彩内容

? Pandas 数据显示的问题

我们在应用 Python 进行数据分析挖掘和机器学习时,最常用的工具库就是 Pandas,它可以帮助我们快捷地进行数据处理和分析。

对 Pandas 不熟悉的同学,一定要学习下这个宝藏工具库哦!ShowMeAI 给大家做了一个详尽的教程,可以在 ? Python 数据分析教程 中查看,我们同时也制作了 ? Pandas速查表,方便大家快速查找需要的功能。如果你喜欢跟着视频学习,那么推荐B站这个 ? 快速实战教程。

但在使用 Pandas 时,我们经常会遇到像下面这样一些问题,它很影响我们查看数据了解详情。

? 长文本无法显示全

对于非常长的字段可能显示不全,如下图中,URL 被缩短显示。

? 科学计数法显示失去细节

Pandas 默认使用『科学计数法』显示大浮点数,例如 1000000.5 显示为 1.000e+06 。对于数值较大的数字,就可能有如下的显示,这导致我们看不到具体数值。

? 小数位精度不一致

对于浮点型的字段列,Pandas 可能有不同的位精度。例如下图中,col_1 精确到小数点后一位,而 col_2 精确到小数点后三位。有时候精度的不一致可能会有信息的差异。

在本篇内容中,ShowMeAI 将介绍如何使用 Pandas 自定义设置来解决诸如上述的问题。主要的设置包括下面内容:

  • 自定义要显示的行数
  • 自定义要显示的列数
  • 自定义列宽
  • 使浮点列之间的小数位精度保持一致
  • 禁用科学记数法
  • 其他用法

注意:以上设置仅更改数据的显示呈现方式,实际并不会影响Dataframe存储的数据。

? Pandas自定义显示设置

? 自定义显示行数

打印大 Dataframe(行列数很多的数据)时,Pandas 默认显示前 5 行和后 5 行,如下图所示。

我们可以通过设置显示选项 display.max_rows 来更改要显示的行数,比如我们将其设置为4。

代码语言:txt
复制
pd.set_option("display.max_row", 4)
df

我们可以使用重置选项 pd.reset_option("display.max_rows") 恢复默认行数显示设置。

? 自定义显示列数

同样的道理,我们可以通过设置 display.max_columns 自定义输出 Dataframe 时要显示的列数。

代码语言:txt
复制
pd.set_option("display.max_columns", 6)
df

我们甚至可以设置 pd.set_option('display.max_columns',`` ``None) 来显示所有列(但是大家需要注意一下内存使用,这个操作可能让 Jupyter Notebook 一下占用特别多资源)。

我们同样可以使用 pd.reset_option("display.max_columns") 重置返回到默认设置。

? 自定义列宽

在下图中,我们看不到前两行的全文,因为它们的字符太长(长度超过了 50)。

我们把设置 display.max_colwidth调整到 70,就可以看到全文了,如下图所示。

代码语言:txt
复制
pd.set_option("display.max_colwidth", 70)
df

对这个设置重置的操作依旧是pd.reset_option("display.max_colwidth")

? 设置字段小数位精度一致

前面提到的一个例子中,col_1col_2 的小数位精度不一致:

我们可以通过设置 display.float_format"{:.2f}".format 使格式一致,如下图所示。

该选项只会影响浮点列,而不影响整数列。

代码语言:txt
复制
pd.set_option("display.float_format", "{:.2f}".format)
df

对这个设置重置的操作是 pd.reset_option("display.float_format")

? 禁用科学计数法

Pandas 默认以科学计数法显示较大的浮点值。

通过设置 display.float_format"{:,.2f}".format,我们可以为千位添加分隔符。

代码语言:txt
复制
pd.set_option("display.float_format", "{:,.2f}".format)
df

我们甚至可以添加货币符号在数值前面,比如我们把 display.float_format 设置为 "$ {:,.2f}".format,得到如下结果:

代码语言:txt
复制
pd.set_option("display.float_format", "$ {:,.2f}".format)
df

? 其他设置

上面列到的是一些最常用的设置,如果我们记不住这些设置名称,或者我们想了解全部可以调整的显示设置,可以怎么办呢?实际上大家可以借助pd.describe_option()获得所有可用显示设置的列表。

针针对某个特定的显示设置,可以在 pd.describe_option()中传入想调整的显示设置名称来获取使用细节,例如我们运行pd.describe_option("max_rows")将打印描述 display.max_rows使用细节,如下图所示。

代码语言:txt
复制
pd.describe_option("max_rows")

参考资料

下一篇
举报
领券