首页
学习
活动
专区
圈层
工具
发布
50 篇文章
1
C语言中如何实现数据帧封装与解析
2
【熟视C语言】如何快速的了解一个库函数(C语言讲解,以string.h中的部分库函数为例)
3
C语言代码封装MQTT协议报文,了解MQTT协议通信过程
4
NV12数据格式转H265编码格式实现过程
5
基于Modbus协议实现Openplc与Kingview的仿真通讯与模拟测试
6
onvif协议最新版本_接口协议测试工具
7
linux后台开发常用调试工具
8
C/C++开发人员要了解的几大著名C/C++开源库[通俗易懂]
9
适用于嵌入式环境的加速计算库
10
Linux下WebRTC框架Janus编译过程
11
探索嵌入式应用框架(EAF)
12
[C&C++]联合体union的特征及用其进行传输
13
联合体和结构体一起解析数据
14
国标GB28181协议客户端开发(四)实时视频数据传输
15
6.1 C/C++ 封装字符串操作
17
C语言进阶——自定义类型
18
干货 | 结构体、联合体嵌套使用的一些实用操作
19
C语言的面向对象编程
20
QT应用编程: 编写低功耗BLE蓝牙调试助手(Android系统APP)
21
设计模式之接口隔离原则C++实现
22
嵌入式软件开发的框架思维
23
通过面向对象设计串口协议
24
QT应用编程: 开发串口调试助手
25
一种高效的串口自定义16进制通信协议的嵌入式应用开发解决方案
26
嵌入式中状态机的几种骚操作
27
【干货】用FreeRTOS搭建Event-Driven应用框架
28
嵌入式开发基础之任务管理(线程管理)
29
SIP菜鸟如何学SIP
30
Linux下使用libuvc读取控制USB免驱摄像头
31
Linux 使用strace命令查找进程卡死原因
32
84-OOP之组合
33
如何调试多线程程序
34
GDB多线程调试分析
35
GDB多线程多进程调试
36
一个简单实用的线程基类
37
OpenThread是世界上最舒心的跨平台多线程并发库
38
OpenMiniServer是一个超迷你、 超易用的C++高并发跨平台服务器框架
39
OpenSocket是跨全平台的高性能高并发网络库
40
一个C++多线程TCP服务Demo
41
一文搞懂网络库的分层设计!
42
实现一个接收多路RTP流,输出一路RTMP流的简单MCU
43
谈谈嵌入式应用软件人机界面开发的菜单框架编写
44
union 的概念及在嵌入式编程中的应用
45
让终端支持https,移植OpenSSL和libcurl到嵌入式linux,遇到的问题总结
46
日常工作中的设计:解耦和封装
47
一种简易的嵌入式设备系统日志记录方法
48
PLC和计算机通信的数据采集方法和传输监控的实现(1)
49
C++随笔(五)三种实现串口通信的方式
50
开源一个自己写过的MQTT 客户端调试工具

干货 | 结构体、联合体嵌套使用的一些实用操作

结构体、联合体是C语言中的构造类型,结构体我们平时应该都用得很多。但是,对于联合体,一些初学的朋友可能用得并不多,甚至感到陌生。我们先简单看一下联合体:

在C语言中定义联合体的关键字是union

定义一个联合类型的一般形式为:

代码语言:javascript
复制
union 联合名
{
成员表
};

成员表中含有若干成员,成员的一般形式为:类型说明符 成员名。其占用的字节数与成员中最大数据类型占用的字节数。

下面我们一起看一下结构体、联合体结合使用在C语言、嵌入式中的一些实用技巧。

1、应用于管理不同的数据

示例代码:

代码语言:javascript
复制
enum DATA_PKG_TYPE
{
    DATA_PKG1 = 1,
    DATA_PKG2,
    DATA_PKG3    
};

struct data_pkg1
{
    // ...
};

struct data_pkg2
{
    // ...
};

struct data_pkg3
{
    // ...
};

struct data_pkg
{
    enum DATA_PKG_TYPE data_pkg_type;
    union 
    {
       struct data_pkg1 data_pkg1_info;
       struct data_pkg2 data_pkg2_info;
       struct data_pkg3 data_pkg3_info;
    }data_pkg_info;
};

这里把struct data_pkg1、struct data_pkg2、struct data_pkg3三个结构体放到了struct data_pkg这个结构体里进行管理,把data_pkg_type与union里的三个结构体建立一一对应关系,我们需要用哪一结构体数据就通过data_pkg_type来进行选中。

在进行数据组包的时候,先给data_pkg_type进行赋值,确定数据包的类型,再给对应的union里的结构体进行赋值;在进行数据解析的时候,通过data_pkg_type来选择解析哪一组数据。

思考一下,如果在union里面再嵌套一层union会怎么样?会变得更复杂?以前的话,我会觉得越嵌套会越复杂,我也很抵制这种不断嵌套的做法。但后来看了我同事鱼鹰(公众号:鱼鹰谈单片机)的设计之后,我惊呆了!这可太秀了,他就是这么嵌套使用把原本复杂的系统数据管理得明明白白的。我们看他怎么设计的(看个大概的图):

可以看到最左边和最右边这就建立起了一一对应关系,我们的模块很多,数据很多,但是在这样的设计中显得很清晰、很容易维护。

2、寄存器、状态变量封装

我们看一看TI的寄存器封装是怎么做的:

所有的寄存器被封装成联合体类型的,联合体里边的成员是一个32bit的整数及一个结构体,该结构体以位域的形式体现。这样就可以达到直接操控寄存器的某些位了。比如,我们要设置PA0引脚的GPAQSEL1寄存器的[1:0]两位都为1,则我们只操控两个bit就可以很方便的这么设置:

代码语言:javascript
复制
GpioCtrlRegs.GPAQSEL1.bit.GPIO0 = 3

或者直接操控整个寄存器:

代码语言:javascript
复制
GpioCtrlRegs.GPAQSEL1.all |=0x03 

位域相关文章:【C语言笔记】位域

如果不是工作于芯片原厂,寄存器的封装应该离我们很远。但我们可以学习使用这种方法,然后用于我们的实际应用开发中。

下面就看一种实际应用:管理一些状态变量

示例代码:

代码语言:javascript
复制
union sys_status
{
   uint32 all_status;
   struct 
   {
      bool status1:  1; // FALSE / TRUE
      bool status2:  1; // 
      bool status3:  1; // 
      bool status4:  1; // 
      bool status5:  1; // 
      bool status6:  1; // 
      bool status7:  1; // 
      bool status8:  1; // 
      bool status9:  1; // 
      bool status10: 1; // 
   // ...
  }bit;
};

之前记得群里有一位小伙伴问系统有几十个状态变量需要管理,怎么做比较好。如上例子就是比较好的一种管理方法。

3、数据组合/拆分、大小端

(1)验证大小端

代码语言:javascript
复制
#include <stdio.h>

typedef unsigned int  uint32_t;
typedef unsigned char uint8_t;

union bit32_data
{
    uint32_t data;
    struct 
    {
        uint8_t byte0;
        uint8_t byte1;
        uint8_t byte2;
        uint8_t byte3;
    }byte;
};

int main(void)
{
    union bit32_data num;
    
    num.data = 0x12345678;
 
    if (0x78 == num.byte.byte0)
    {
      printf("Little endian\n");
    }
    else if (0x78 == num.byte.byte3)
    {
      printf("Big endian\n");
    }else{}

    return 0;
}

运行结果:

(2)数据组合、拆分

这其实也就是上一篇文章《面试题 | 获取整数各个字节》介绍的。在数据组合与拆分之前首先需要确实当前平台的大小端。比如小编使用的平台是小端模式

① 把0x12345678拆分成0x78、0x56、0x34、0x12:

代码语言:javascript
复制
#include <stdio.h>

typedef unsigned int  uint32_t;
typedef unsigned char uint8_t;

union bit32_data
{
    uint32_t data;
    struct 
    {
        uint8_t byte0;
        uint8_t byte1;
        uint8_t byte2;
        uint8_t byte3;
    }byte;
};

int main(void)
{
    union bit32_data num;
    
    num.data = 0x12345678;

    printf("byte0 = 0x%x\n", num.byte.byte0);
    printf("byte1 = 0x%x\n", num.byte.byte1);
    printf("byte2 = 0x%x\n", num.byte.byte2);
    printf("byte3 = 0x%x\n", num.byte.byte3);

    return 0;
}

运行结果:

② 把0x78、0x56、0x34、0x12组合成0x12345678:

代码语言:javascript
复制
#include <stdio.h>

typedef unsigned int  uint32_t;
typedef unsigned char uint8_t;

union bit32_data
{
    uint32_t data;
    struct 
    {
        uint8_t byte0;
        uint8_t byte1;
        uint8_t byte2;
        uint8_t byte3;
    }byte;
};

int main(void)
{
    union bit32_data num;
    
    num.byte.byte0 = 0x78;
 num.byte.byte1 = 0x56;
 num.byte.byte2 = 0x34;
 num.byte.byte3 = 0x12;

    printf("num.data = 0x%x\n", num.data);

    return 0;
}

运行结果:

但是数据组合与拆分有更好的方法:移位操作。篇幅有限不再贴出代码,详细代码可参考:《面试题 | 获取整数各个字节》《C语言、嵌入式位操作精华技巧大汇总》两篇文章。

4、结构体 & 缓冲区

代码语言:javascript
复制
#define BUF_SIZE 16
union protocol_data
{
 uint8_t data_buffer[BUF_SIZE];
 struct 
 {
  uint8_t data1;
  uint8_t data2;
  uint8_t data3;
  uint8_t data4;
  // ...
 }data_info;
};

这种应用得很广泛,用于自定义通信协议。struct里面的内容可以设计得很简单,比如全是有用的数据,或是设计得很复杂,包含一些协议头尾、包长、有效数据、校验等内容。

但无论如何,我们组包发送的过程是填充结构体->发送data_buffer;反之接收数据解析的过程就是接收数据存于data_buffer->使用结构体数据。我们之前分享的《干货 | protobuf-c之嵌入式平台使用》也是这个思路。

5、传输浮点数据

代码语言:javascript
复制
union f_data 
{
 float f;
 struct
 {
  unsigned char byte[4];
 };
}

类似的,使用这样子的方法可以用于传输浮点数,更具体地不再展开,网络上有很多这一块的资料。感兴趣的朋友可以自己操作验证验证。

最后

以上就是本次的分享,如果觉得文章不错,转发、在看,也是我们继续更新的动力。

下一篇
举报
领券