首页
学习
活动
专区
圈层
工具
发布

强化学习系列之四:模型无关的策略学习

模型无关的策略学习,是在不知道马尔科夫决策过程的情况下学习到最优策略。模型无关的策略学习主要有三种算法: MC Control, SARSA 和 Q learning。

1. 一些前置话题

在模型相关强化学习中,我们的工作是找到最优策略的状态价值

。但是在模型无关的环境下,这个做法却行不通。如果我们在模型无关环境下找最优策略的状态价值

,在预测时,对状态

最优策略如下所示。

(1)

同学们看到

了没?在模型无关的设定下,我们不知道这两个值。也许有同学说可以在预测时探索环境得到

。但是实际问题中,探索会破坏当前状态。比如机器人行走任务中,为了探索机器人需要做出一个动作,这个动作使得机器人状态发生变化。这时候为原来状态选择最优动作已经没有意义了。解决办法是把工作对象换成状态-动作价值

。获得最优策略的状态-动作价值

之后,对于状态

最优策略如下所示。

(2)

另一个话题关于贪婪策略。最优策略是贪婪策略,这个不用怀疑。但对于学习来说,贪婪策略不一定是最好的。举个栗子,状态集合为 {A, B, C, D}, 其中 A 是起始状态而 D 是终止状态。A->B 奖励为1 而 C->D 奖励为100,其他奖励为0。从起始状态 A, 贪婪策略会一直选择进入 B,而不探索 C 从而获得更高奖励。为了鼓励探索,我们用了另一种

贪婪策略,其公式如下。

(3)

2. MC Control

一听到 Monte Carlo Control (MC Control) 这个名字,我们就知道,这个算法生成样本然后根据样本计算状态-动作价值。对于每一个状态-动作对,我们都要维持他们的价值

和被访问次数

。让系统采样一个状态-动作-奖励的系列,然后对于每个状态-动作更新价值和次数。

(4)

其中

是预期衰减奖励之和。MC Control 算法的代码如下。

代码语言:javascript
复制
def mc(num_iter1, epsilon):
    n = dict();
    for s in states:
        for a in actions:
            qfunc["%d_%s"%(s,a)] = 0.0
            n["%d_%s"%(s,a)]     = 0.001 //平滑

    for iter1 in xrange(num_iter1):
        s_sample = []
        a_sample = []
        r_sample = []   
        
        s = states[int(random.random() * len(states))]
        t = False
        while False == t:
            a = epsilon_greedy(s, epsilon)
            t, s1, r  = grid.transform(s,a)
            s_sample.append(s)
            r_sample.append(r)
            a_sample.append(a)
            s = s1            

        g = 0.0
        for i in xrange(len(s_sample)-1, -1, -1):
            g *= gamma
            g += r_sample[i];
                
        for i in xrange(len(s_sample)):
            key = "%d_%s"%(s_sample[i], a_sample[i])
            n[key]      += 1.0;
            qfunc[key]   = (qfunc[key] * (n[key]-1) + g) / n[key]            
 
            g -= r_sample[i];
            g /= gamma;

在 MC Control 算法中,状态-动作价值会收敛到

贪婪策略的状态-动作价值,不会收敛到最优策略的状态-动作价值。不过,这里有一个很好玩的事情。MC Control 采用

贪婪策略算出了状态-动作价值

。如果在预测时采用贪婪策略,系统很有可能是遵循最优策略。

还是拿机器人找金币当例子。机器人从任意一个状态出发寻找金币,找到金币则获得奖励 1,碰到海盗则损失 1。找到金币或者碰到海盗,机器人都停止。衰减因子

设为 0.8。左边是 MC Control 采用

贪婪策略的

(1 状态标示了所有的 q 值,其他状态只标示了最大的 q 值,其中 ),0.9 是很大的

表示策略有很大的随机性。在这个状态-动作价值采用贪婪策略,策略动作和右边最优策略采取的动作完全一致。

不知道这个论断理论上是不是成立的?如果有哪位大牛了解,期待您的指导。

3. SARSA

State Action Reward State Action (SARSA) 算法其实是状态-动作价值版本的时差学习 (Temporal Difference, TD) 算法。SARSA 利用马尔科夫性质,只利用了下一步信息。SARSA 让系统按照策略指引进行探索,在探索每一步都进行状态价值的更新,更新公式如下所示。

(5)

s 为当前状态,a 是当前采取的动作,s’ 为下一步状态,a’ 是下一个状态采取的动作,r 是系统获得的奖励,

是学习率,

是衰减因子。SARSA 的代码如下。

代码语言:javascript
复制
def sarsa(num_iter1, alpha, epsilon):
    for s in states:
        for a in actions:
            key = "%d_%s"%(s,a)
            qfunc[key] = 0.0

    for iter1 in xrange(num_iter1):
        s = states[int(random.random() * len(states))]
        a = actions[int(random.random() * len(actions))]
        t = False
        while False == t:
            key         = "%d_%s"%(s,a)
            t,s1,r      = grid.transform(s,a)
            a1          = epsilon_greedy(s1, epsilon)
            key1        = "%d_%s"%(s1,a1)
            qfunc[key]  = qfunc[key] + alpha * ( \
                          r + gamma * qfunc[key1] - qfunc[key])
            s           = s1
            a           = a1

SARSA 收敛到哪里呢?和 MC Control 算法一样,SARSA 的状态-动作价值也收敛到

贪婪策略的状态-动作价值上。

4. Q Learning

Q Learning 的算法框架和 SARSA 类似。Q Learning 也是让系统按照策略指引进行探索,在探索每一步都进行状态价值的更新。关键在于 Q Learning 和 SARSA 的更新公式不一样,Q Learning 的更新公式如下。

(6)

Q Learning 的代码如下。

代码语言:javascript
复制
def qlearning(num_iter1, alpha, epsilon):
   
    for s in states:
        for a in actions:
            key = "%d_%s"%(s,a)
            qfunc[key] = 0.0

    for iter1 in xrange(num_iter1):

        s = states[int(random.random() * len(states))]
        a = actions[int(random.random() * len(actions))]
        t = False
        while False == t:
            key         = "%d_%s"%(s,a)
            t,s1,r      = grid.transform(s,a)

            key1 = ""
            qmax = -1.0
            for a1 in actions:
                if qmax < qfunc["%d_%s"%(s1,a1)]:
                    qmax = qfunc["%d_%s"%(s1,a1)]
                    key1 = "%d_%s"%(s1,a1)
            qfunc[key]  = qfunc[key] + alpha * ( \
                          r + gamma * qfunc[key1] - qfunc[key])

            s           = s1
            a           = epsilon_greedy(s1, epsilon)

Q Learning 的收敛性是很好玩的。Q Learning 与 MC Control 和 SARSA 一样采用了

-贪婪策略,但 Q Learning 的状态-动作价值却能收敛到最优策略的状态-动作价值。

5. 做点实验

实验还是以机器人找金币为场景。机器人从任意一个状态出发寻找金币,找到金币则获得奖励 1,碰到海盗则损失 1。找到金币或者碰到海盗,机器人都停止。衰减因子

设为 0.8。

我们将算法计算得到的状态-动作价值和最优策略的状态-动作价值之间的平方差,作为评价指标,其计算公式如下。

(7)

其中

是最优策略的状态-动作价值。

5.1. 算法稳定性

MC Control、 SARSA 和 Q Learning 在算法运行过程中,都有随机因素。我们会关心每次运行的效果是类似的还是差别很大,也就是算法的稳定性。从下图我们可以看到,MC Control 是最不稳定的算法。平方误差下降阶段,SARSA 的稳定性很好,但收敛之后 SARSA 会上下抖动。 Q Learning 拥有良好的稳定性。

5.2.

贪婪策略的影响

对算法有影响。

最大为 1 的时候,MC Control 和 SARSA 的平方误差很大,Q Learning 能够让平方误差降到 0。其实这个时候

贪婪策略相当于随机策略。MC Control 和 SARSA 的状态-动作价值收敛到了随机策略的状态-动作价值,因此保持一个比较大的值。Q Learning 依然能够收敛到最优策略的状态-动作价值,因此能降到 0。随着

的下降,MC Control 和 SARSA 收敛之后的平方误差会降低,Q Learning 则一如既往地降到 0。

这个实验表明 Q learning 能从其他策略探索经验中学习。我们称能够从其他策略学习到最优策略的算法为离策略 (off-policy) 算法,反之为在策略 (on-policy) 算法。MC Control 和 SARSA 是在策略的,Q Learning 是离策略的。

还有一点就是,

越大, SARSA 收敛之后抖动就越厉害。

5.3. 不同算法的效果对比

全面考察这三种算法,在机器人找金币这个场景上,Q Learning 要好于 SARSA,SARSA 要好于 MC Control。

6. 总结

本文介绍了模型无关的策略学习。模型无关的策略学习主要有三种算法: Monte Carlo Control, Sarsa 和 Q learning。本文代码可以在 Github 上找到,欢迎有兴趣的同学帮我挑挑毛病。强化学习系列的下一篇文章将介绍基于梯度的强化学习。

下一篇
举报
领券