首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python3《机器学习实战》学习笔记(六):Logistic回归基础篇之梯度上升算法

版权声明:本文为博主原创文章,未经博主允许不得转载。个人网站:http://cuijiahua.comhttps://cloud.tencent.com/developer/article/1433820

转载请注明作者和出处: http://blog.csdn.net/c406495762

**机器学习知乎专栏:**https://zhuanlan.zhihu.com/ml-jack

**CSDN博客专栏:**http://blog.csdn.net/column/details/16415.html

**Github代码获取:**https://github.com/Jack-Cherish/Machine-Learning/

Python版本: Python3.x

运行平台: Windows

IDE: Sublime text3

文章目录

- [@[toc]](https://cloud.tencent.com/developer/audit/support-plan/4867557#toc_8)

一 前言

本文从Logistic回归的原理开始讲起,补充了书上省略的数学推导。本文可能会略显枯燥,理论居多,Sklearn实战内容会放在下一篇文章。自己慢慢推导完公式,还是蛮开心的一件事。


二 Logistic回归与梯度上升算法

Logistic回归是众多分类算法中的一员。通常,Logistic回归用于二分类问题,例如预测明天是否会下雨。当然它也可以用于多分类问题,不过为了简单起见,本文暂先讨论二分类问题。首先,让我们来了解一下,什么是Logistic回归。

1 Logistic回归

假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作为回归,如下图所示:

Logistic回归一种二分类算法,它利用的是Sigmoid函数阈值在0,1这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型(Discriminative Model)。

所以要想了解Logistic回归,我们必须先看一看Sigmoid函数 ,我们也可以称它为Logistic函数。它的公式如下:

整合成一个公式,就变成了如下公式:

下面这张图片,为我们展示了Sigmoid函数的样子。

z是一个矩阵,θ是参数列向量(要求解的),x是样本列向量(给定的数据集)。θ^T表示θ的转置。g(z)函数实现了任意实数到0,1的映射,这样我们的数据集(x0,x1,…,xn),不管是大于1或者小于0,都可以映射到0,1区间进行分类。hθ(x)给出了输出为1的概率。比如当hθ(x)=0.7,那么说明有70%的概率输出为1。输出为0的概率是输出为1的补集,也就是30%。

如果我们有合适的参数列向量θ(θ0,θ1,…θn^T),以及样本列向量x(x0,x1,…,xn),那么我们对样本x分类就可以通过上述公式计算出一个概率,如果这个概率大于0.5,我们就可以说样本是正样本,否则样本是负样本。

举个例子,对于"垃圾邮件判别问题",对于给定的邮件(样本),我们定义非垃圾邮件为正类,垃圾邮件为负类。我们通过计算出的概率值即可判定邮件是否是垃圾邮件。

那么问题来了!如何得到合适的参数向量θ?

根据sigmoid函数的特性,我们可以做出如下的假设:

上式即为在已知样本x和参数θ的情况下,样本x属性正样本(y=1)和负样本(y=0)的条件概率。理想状态下,根据上述公式,求出各个点的概率均为1,也就是完全分类都正确。但是考虑到实际情况,样本点的概率越接近于1,其分类效果越好。比如一个样本属于正样本的概率为0.51,那么我们就可以说明这个样本属于正样本。另一个样本属于正样本的概率为0.99,那么我们也可以说明这个样本属于正样本。但是显然,第二个样本概率更高,更具说服力。我们可以把上述两个概率公式合二为一:

合并出来的Cost,我们称之为代价函数(Cost Function)。当y等于1时,(1-y)项(第二项)为0;当y等于0时,y项(第一项)为0。为了简化问题,我们对整个表达式求对数,(将指数问题对数化是处理数学问题常见的方法):

这个代价函数,是对于一个样本而言的。给定一个样本,我们就可以通过这个代价函数求出,样本所属类别的概率,而这个概率越大越好,所以也就是求解这个代价函数的最大值。既然概率出来了,那么最大似然估计也该出场了。假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积,再将公式对数化,便可得到如下公式:

其中,m为样本的总数,y(i)表示第i个样本的类别,x(i)表示第i个样本,需要注意的是θ是多维向量,x(i)也是多维向量。

综上所述,满足J(θ)的最大的θ值即是我们需要求解的模型。

怎么求解使J(θ)最大的θ值呢?因为是求最大值,所以我们需要使用梯度上升算法。如果面对的问题是求解使J(θ)最小的θ值,那么我们就需要使用梯度下降算法。面对我们这个问题,如果使J(θ) := -J(θ),那么问题就从求极大值转换成求极小值了,使用的算法就从梯度上升算法变成了梯度下降算法,它们的思想都是相同的,学会其一,就也会了另一个。本文使用梯度上升算法进行求解。

2 梯度上升算法

说了半天,梯度上升算法又是啥?J(θ)太复杂,我们先看个简单的求极大值的例子。一个看了就会想到高中生活的函数:

来吧,做高中题。这个函数的极值怎么求?显然这个函数开口向下,存在极大值,它的函数图像为:

求极值,先求函数的导数:

令导数为0,可求出x=2即取得函数f(x)的极大值。极大值等于f(2)=4

但是真实环境中的函数不会像上面这么简单,就算求出了函数的导数,也很难精确计算出函数的极值。此时我们就可以用迭代的方法来做。就像爬坡一样,一点一点逼近极值。这种寻找最佳拟合参数的方法,就是最优化算法。爬坡这个动作用数学公式表达即为:

其中,α为步长,也就是学习速率,控制更新的幅度。效果如下图所示:

比如从(0,0)开始,迭代路径就是1->2->3->4->…->n,直到求出的x为函数极大值的近似值,停止迭代。我们可以编写Python3代码,来实现这一过程:

# -*- coding:UTF-8 -*-
"""
函数说明:梯度上升算法测试函数

求函数f(x) = -x^2 + 4x的极大值

Parameters:
    无
Returns:
    无
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-28
"""
def Gradient_Ascent_test():
    def f_prime(x_old):                                    #f(x)的导数
        return -2 * x_old + 4
    x_old = -1                                            #初始值,给一个小于x_new的值
    x_new = 0                                            #梯度上升算法初始值,即从(0,0)开始
    alpha = 0.01                                        #步长,也就是学习速率,控制更新的幅度
    presision = 0.00000001                                #精度,也就是更新阈值
    while abs(x_new - x_old) > presision:
        x_old = x_new
        x_new = x_old + alpha * f_prime(x_old)            #上面提到的公式
    print(x_new)                                        #打印最终求解的极值近似值

if __name__ == '__main__':
    Gradient_Ascent_test()

代码运行结果如下:

结果很显然,已经非常接近我们的真实极值2了。这一过程,就是梯度上升算法。那么同理,J(θ)这个函数的极值,也可以这么求解。公式可以这么写:

由上小节可知J(θ)为:

sigmoid函数为:

那么,现在我只要求出J(θ)的偏导,就可以利用梯度上升算法,求解J(θ)的极大值了。

那么现在开始求解J(θ)对θ的偏导,求解如下(数学推导):

其中:

再由:

可得:

接下来,就剩下第三部分:

综上所述:

因此,梯度上升迭代公式为:

知道了,梯度上升迭代公式,我们就可以自己编写代码,计算最佳拟合参数了。


三 Python3实战

1 数据准备

数据集已经为大家准备好,下载地址:https://github.com/Jack-Cherish/Machine-Learning/blob/master/Logistic/testSet.txt

这就是一个简单的数据集,没什么实际意义。让我们先从这个简单的数据集开始学习。先看下数据集有哪些数据:

这个数据有两维特征,因此可以将数据在一个二维平面上展示出来。我们可以将第一列数据(X1)看作x轴上的值,第二列数据(X2)看作y轴上的值。而最后一列数据即为分类标签。根据标签的不同,对这些点进行分类。

那么,先让我们编写代码,看下数据集的分布情况:

# -*- coding:UTF-8 -*-
import matplotlib.pyplot as plt
import numpy as np

"""
函数说明:加载数据

Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-28
"""
def loadDataSet():
    dataMat = []                                                        #创建数据列表
    labelMat = []                                                        #创建标签列表
    fr = open('testSet.txt')                                            #打开文件   
    for line in fr.readlines():                                            #逐行读取
        lineArr = line.strip().split()                                    #去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])        #添加数据
        labelMat.append(int(lineArr[2]))                                #添加标签
    fr.close()                                                            #关闭文件
    return dataMat, labelMat                                            #返回

"""
函数说明:绘制数据集

Parameters:
    无
Returns:
    无
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-28
"""
def plotDataSet():
    dataMat, labelMat = loadDataSet()                                    #加载数据集
    dataArr = np.array(dataMat)                                            #转换成numpy的array数组
    n = np.shape(dataMat)[0]                                            #数据个数
    xcord1 = []; ycord1 = []                                            #正样本
    xcord2 = []; ycord2 = []                                            #负样本
    for i in range(n):                                                    #根据数据集标签进行分类
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])    #1为正样本
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])    #0为负样本
    fig = plt.figure()
    ax = fig.add_subplot(111)                                            #添加subplot
    ax.scatter(xcord1, ycord1, s = 20, c = 'red', marker = 's',alpha=.5)#绘制正样本
    ax.scatter(xcord2, ycord2, s = 20, c = 'green',alpha=.5)            #绘制负样本
    plt.title('DataSet')                                                #绘制title
    plt.xlabel('x'); plt.ylabel('y')                                    #绘制label
    plt.show()                                                            #显示

if __name__ == '__main__':
    plotDataSet()

运行结果如下:

从上图可以看出数据的分布情况。假设Sigmoid函数的输入记为z,那么z=w0x0 + w1x1 + w2x2,即可将数据分割开。其中,x0为全是1的向量,x1为数据集的第一列数据,x2为数据集的第二列数据。另z=0,则0=w0 + w1x1 + w2x2。横坐标为x1,纵坐标为x2。这个方程未知的参数为w0,w1,w2,也就是我们需要求的回归系数(最优参数)。

2 训练算法

在编写代码之前,让我们回顾下梯度上升迭代公式:

将上述公式矢量化:

根据矢量化的公式,编写代码如下:

# -*- coding:UTF-8 -*-
import numpy as np

"""
函数说明:加载数据

Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-28
"""
def loadDataSet():
    dataMat = []                                                        #创建数据列表
    labelMat = []                                                        #创建标签列表
    fr = open('testSet.txt')                                            #打开文件   
    for line in fr.readlines():                                            #逐行读取
        lineArr = line.strip().split()                                    #去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])        #添加数据
        labelMat.append(int(lineArr[2]))                                #添加标签
    fr.close()                                                            #关闭文件
    return dataMat, labelMat                                            #返回

"""
函数说明:sigmoid函数

Parameters:
    inX - 数据
Returns:
    sigmoid函数
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-28
"""
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))


"""
函数说明:梯度上升算法

Parameters:
    dataMatIn - 数据集
    classLabels - 数据标签
Returns:
    weights.getA() - 求得的权重数组(最优参数)
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-28
"""
def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)                                        #转换成numpy的mat
    labelMat = np.mat(classLabels).transpose()                            #转换成numpy的mat,并进行转置
    m, n = np.shape(dataMatrix)                                            #返回dataMatrix的大小。m为行数,n为列数。
    alpha = 0.001                                                        #移动步长,也就是学习速率,控制更新的幅度。
    maxCycles = 500                                                        #最大迭代次数
    weights = np.ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)                                #梯度上升矢量化公式
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights.getA()                                                #将矩阵转换为数组,返回权重数组

if __name__ == '__main__':
    dataMat, labelMat = loadDataSet()           
    print(gradAscent(dataMat, labelMat))

运行结果如图所示:

可以看出,我们已经求解出回归系数w0,w1,w2。

通过求解出的参数,我们就可以确定不同类别数据之间的分隔线,画出决策边界。

3 绘制决策边界

我们已经解出了一组回归系数,它确定了不同类别数据之间的分隔线。现在开始绘制这个分隔线,编写代码如下:

# -*- coding:UTF-8 -*-
import matplotlib.pyplot as plt
import numpy as np

"""
函数说明:加载数据

Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-28
"""
def loadDataSet():
    dataMat = []                                                        #创建数据列表
    labelMat = []                                                        #创建标签列表
    fr = open('testSet.txt')                                            #打开文件   
    for line in fr.readlines():                                            #逐行读取
        lineArr = line.strip().split()                                    #去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])        #添加数据
        labelMat.append(int(lineArr[2]))                                #添加标签
    fr.close()                                                            #关闭文件
    return dataMat, labelMat                                            #返回


"""
函数说明:sigmoid函数

Parameters:
    inX - 数据
Returns:
    sigmoid函数
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-28
"""
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))

"""
函数说明:梯度上升算法

Parameters:
    dataMatIn - 数据集
    classLabels - 数据标签
Returns:
    weights.getA() - 求得的权重数组(最优参数)
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-28
"""
def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)                                        #转换成numpy的mat
    labelMat = np.mat(classLabels).transpose()                            #转换成numpy的mat,并进行转置
    m, n = np.shape(dataMatrix)                                            #返回dataMatrix的大小。m为行数,n为列数。
    alpha = 0.001                                                        #移动步长,也就是学习速率,控制更新的幅度。
    maxCycles = 500                                                        #最大迭代次数
    weights = np.ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)                                #梯度上升矢量化公式
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights.getA()                                                #将矩阵转换为数组,返回权重数组

"""
函数说明:绘制数据集

Parameters:
    weights - 权重参数数组
Returns:
    无
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-08-30
"""
def plotBestFit(weights):
    dataMat, labelMat = loadDataSet()                                    #加载数据集
    dataArr = np.array(dataMat)                                            #转换成numpy的array数组
    n = np.shape(dataMat)[0]                                            #数据个数
    xcord1 = []; ycord1 = []                                            #正样本
    xcord2 = []; ycord2 = []                                            #负样本
    for i in range(n):                                                    #根据数据集标签进行分类
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])    #1为正样本
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])    #0为负样本
    fig = plt.figure()
    ax = fig.add_subplot(111)                                            #添加subplot
    ax.scatter(xcord1, ycord1, s = 20, c = 'red', marker = 's',alpha=.5)#绘制正样本
    ax.scatter(xcord2, ycord2, s = 20, c = 'green',alpha=.5)            #绘制负样本
    x = np.arange(-3.0, 3.0, 0.1)
    y = (-weights[0] - weights[1] * x) / weights[2]
    ax.plot(x, y)
    plt.title('BestFit')                                                #绘制title
    plt.xlabel('X1'); plt.ylabel('X2')                                    #绘制label
    plt.show()       

if __name__ == '__main__':
    dataMat, labelMat = loadDataSet()           
    weights = gradAscent(dataMat, labelMat)
    plotBestFit(weights)

运行结果如下:

这个分类结果相当不错,从上图可以看出,只分错了几个点而已。但是,尽管例子简单切数据集很小,但是这个方法却需要大量的计算(300次乘法)。因此下篇文章将对改算法稍作改进,从而减少计算量,使其可以应用于大数据集上。


四 总结

Logistic回归的一般过程:

  • 收集数据:采用任意方法收集数据。
  • 准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
  • 分析数据:采用任意方法对数据进行分析。
  • 训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
  • 测试算法:一旦训练步骤完成,分类将会很快。
  • 使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数,就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。

其他:

  • Logistic回归的目的是寻找一个非线性函数Sigmoid的最佳拟合参数,求解过程可以由最优化算法完成。
  • 本文讲述了Logistic回归原理以及数学推导过程。
  • 下篇文章将讲解Logistic回归的改进以及Sklearn实战内容。
  • 如有问题,请留言。如有错误,还望指正,谢谢!

PS: 如果觉得本篇本章对您有所帮助,欢迎关注、评论、顶!

本文出现的所有代码和数据集,均可在我的github上下载,欢迎Follow、Star:https://github.com/Jack-Cherish/Machine-Learning

参考文献:

下一篇
举报
领券