分词器
Analysis 和 Analyzer
Analysis:文本分析是把全文本转换一系列单词(term/token)的过程,也叫分词(Analyzer)。Analysis是通过Analyzer来实现的。分词就是将文档通过Analyzer分成一个一个的Term(关键词查询),每一个Term都指向包含这个Term的文档。
Analyzer 组成
注意: 在ES中默认使用标准分词器: StandardAnalyzer 特点: 中文单字分词 单词分词
我是中国人 this is good man----> analyzer----> 我 是 中 国 人 this is good man
分析器(analyzer)都由三种构件组成的:character filters , tokenizers , token filters。
character filter 字符过滤器
在一段文本进行分词之前,先进行预处理,比如说最常见的就是,过滤html标签(hello --> hello),& --> and(I&you --> I and you)
tokenizers 分词器
英文分词可以根据空格将单词分开,中文分词比较复杂,可以采用机器学习算法来分词。
Token filters Token过滤器
将切分的单词进行加工。大小写转换(例将“Quick”转为小写),去掉停用词(例如停用词像“a”、“and”、“the”等等),加入同义词(例如同义词像“jump”和“leap”)。
注意:
三者顺序:Character Filters--->Tokenizer--->Token Filter
三者个数:Character Filters(0个或多个) + Tokenizer + Token Filters(0个或多个)
内置分词器
Standard Analyzer - 默认分词器,英文按单词词切分,并小写处理
Simple Analyzer - 按照单词切分(符号被过滤), 小写处理
Stop Analyzer - 小写处理,停用词过滤(the,a,is)
Whitespace Analyzer - 按照空格切分,不转小写
Keyword Analyzer - 不分词,直接将输入当作输出
内置分词器测试
标准分词器
特点: 按照单词分词 英文统一转为小写 过滤标点符号 中文单字分词
POST /_analyze
{
"analyzer": "standard",
"text": "this is a , good Man 中华人民共和国"
}
Simple 分词器
特点: 英文按照单词分词 英文统一转为小写 去掉符号 中文按照空格进行分词
POST /_analyze
{
"analyzer": "simple",
"text": "this is a , good Man 中华人民共和国"
}
Whitespace 分词器
特点: 中文 英文 按照空格分词 英文不会转为小写 不去掉标点符号
POST /_analyze
{
"analyzer": "whitespace",
"text": "this is a , good Man"
}
创建索引设置分词
PUT /索引名
{
"settings": {},
"mappings": {
"properties": {
"title":{
"type": "text",
"analyzer": "standard" //显示指定分词器
}
}
}
}
中文分词器
在ES中支持中文分词器非常多 如 smartCN、IK 等,推荐的就是 IK分词器。
安装IK
开源分词器 Ik 的github:https://github.com/medcl/elasticsearch-analysis-ik
注意 IK分词器的版本要你安装ES的版本一致
注意 Docker 容器运行 ES 安装插件目录为 /usr/share/elasticsearch/plugins
# 1. 下载对应版本
- [es@linux ~]$ wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.14.0/elasticsearch-analysis-ik-7.14.0.zip
# 2. 解压
- [es@linux ~]$ unzip elasticsearch-analysis-ik-6.2.4.zip #先使用yum install -y unzip
# 3. 移动到es安装目录的plugins目录中
- [es@linux ~]$ ls elasticsearch-6.2.4/plugins/
[es@linux ~]$ mv elasticsearch elasticsearch-6.2.4/plugins/
[es@linux ~]$ ls elasticsearch-6.2.4/plugins/
elasticsearch
[es@linux ~]$ ls elasticsearch-6.2.4/plugins/elasticsearch/
commons-codec-1.9.jar config httpclient-4.5.2.jar plugin-descriptor.properties
commons-logging-1.2.jar elasticsearch-analysis-ik-6.2.4.jar httpcore-4.4.4.jar
# 4. 重启es生效
# 5. 本地安装ik配置目录为
- es安装目录中/plugins/analysis-ik/config/IKAnalyzer.cfg.xml
IK使用
IK有两种颗粒度的拆分:
ik_smart: 会做最粗粒度的拆分
ik_max_word: 会将文本做最细粒度的拆分
POST /_analyze
{
"analyzer": "ik_smart",
"text": "中华人民共和国国歌"
}
POST /_analyze
{
"analyzer": "ik_max_word",
"text": "中华人民"
}
扩展词、停用词配置
IK支持自定义扩展词典和停用词典
**扩展词典**就是有些词并不是关键词,但是也希望被ES用来作为检索的关键词,可以将这些词加入扩展词典。
**停用词典**就是有些词是关键词,但是出于业务场景不想使用这些关键词被检索到,可以将这些词放入停用词典。
定义扩展词典和停用词典可以修改IK分词器中config目录中IKAnalyzer.cfg.xml这个文件。
1. 修改vim IKAnalyzer.cfg.xml
IK Analyzer 扩展配置
ext_dict.dic
ext_stopword.dic
2. 在ik分词器目录下config目录中创建ext_dict.dic文件 编码一定要为UTF-8才能生效
vim ext_dict.dic 加入扩展词即可
3. 在ik分词器目录下config目录中创建ext_stopword.dic文件
vim ext_stopword.dic 加入停用词即可
4.重启es生效
注意: 词典的编码必须为UTF-8,否则无法生效!
领取专属 10元无门槛券
私享最新 技术干货