这个包会调用WinBUGS软件来拟合模型,后来的JAGS软件也使用与之类似的算法来做贝叶斯分析。然而JAGS的自由度更大,扩展性也更好。近来,STAN和它对应的R包rstan一起进入了人们的视线。STAN使用的算法与WinBUGS和JAGS不同,它改用了一种更强大的算法使它能完成WinBUGS无法胜任的任务。同时Stan在计算上也更为快捷,能节约时间。
相关视频
例子
设Yi为地区i=1,…,ni=1,…,n从2012年到2016年支持率增加的百分比。我们的模型
式中,Xji是地区i的第j个协变量。所有变量均中心化并标准化。我们选择σ2∼InvGamma(0.01,0.01)和α∼Normal(0100)作为误差方差和截距先验分布,并比较不同先验的回归系数。
加载并标准化选举数据
# 加载数据
load("elec.RData")
Y
X
n
p
## [1] 3111
p
## [1] 15
X
# 将模型拟合到大小为100的训练集,并对剩余的观测值进行预测
test 100
table(test)
## test
## FALSE TRUE
## 100 3011
Yo
Xo
Yp
Xp
选举数据的探索性分析
boxplot(X, las = 3
image(1:p, 1:p, main = "预测因子之间的相关性")
rstan中实现
统一先验分布
如果模型没有明确指定先验分布,默认情况下,Stan将在参数的合适范围内发出一个统一的先验分布。注意这个先验可能是不合适的,但是只要数据创建了一个合适的后验值就可以了。
data {
int n; // 数据项数
int k; // 预测变量数
matrix[n,k] X; // 预测变量矩阵
vector[n] Y; // 结果向量
}
parameters {
real alpha; // 截距
vector[k] beta; // 预测变量系数
real sigma; // 误差
rstan_options(auto_write = TRUE)
#fit
print(fit)
hist(fit, pars = pars)
dens(fit)
traceplot(fit)
rjags中实现
用高斯先验拟合线性回归模型
library(rjags)
model{
# 预测
for(i in 1:np){
Yp[i] ~ dnorm(mup[i],inv.var)
mup[i]
# 先验概率
alpha ~ dnorm(0, 0.01)
inv.var ~ dgamma(0.01, 0.01)
sigma
在JAGS中编译模型
# 注意:Yp不发送给JAGS
jags.model(model,
data = list(Yo=Yo,no=no,np=np,p=p,Xo=Xo,Xp=Xp))
coda.samples(model,
variable.names=c("beta","sigma","Yp","alpha"),
从后验预测分布(PPD)和JAGS预测分布绘制样本
#提取每个参数的样本
samps
Yp.samps
#计算JAGS预测的后验平均值
beta.mn
# 绘制后验预测分布和JAGS预测
for(j in 1:5)
# JAGS预测
y
plot(density(y),col=2,xlab="Y",main="PPD")
# 后验预测分布
lines(density(Yp.samps[,j]))
# 真值
abline(v=Yp[j],col=3,lwd=2)
# 95% 置信区间
alpha.mn+Xp%*%beta.mn - 1.96*sigma.mn
alpha.mn+Xp%*%beta.mn + 1.96*sigma.mn
## [1] 0.9452009
# PPD 95% 置信区间
apply(Yp.samps,2,quantile,0.025)
apply(Yp.samps,2,quantile,0.975)
## [1] 0.9634673
请注意,PPD密度比JAGS预测密度略宽。这是考虑β和σ中不确定性的影响,它解释了JAGS预测的covarage略低的原因。但是,对于这些数据,JAGS预测的覆盖率仍然可以。
领取专属 10元无门槛券
私享最新 技术干货