在美国,每天都有2000多人心脏病发作,其中超过400人没有得到及时的救治。当物质堵塞向心脏供血的动脉时,心脏病就会发生。缺少血液,心脏就无法获得必要的营养维持正常运转,它开始慢慢衰竭。病人等待治疗的时间越长,疾病就越有可能对心脏造成无法挽回的伤害。
尽管过去一个世纪,研究人员在心脏病的检测方面取得了许多进展,但其原理和一个世纪前并无二致。迄今为止,医生们仍在使用和20世纪初一样的心电图来监测心脏的活动。根据心脏病的不同发作部位和严重程度,心电图的某些区域会产生变化。但这种变化是非常细微的,不够可靠,而且只包括了心脏全部电信号中的一小部分。
研究人员在心电图中运用了许多不同的信号处理方法,和其他复杂的数学运算,但这些并不足以抵消不同个体心脏间的差异。
就像指纹一样,每个人心脏的形状和跳动的强度都有所不同,因此产生的静式心电图也是独一无二的。更不用说,心脏和身体表面的记录装置之间的空间,随着体重、性别和体型不同而产生的巨大差异。这些导致自动化系统难以预测你独特的心脏,在特定时间点发生了哪些变化。因此需要一个新的系统,这个系统能够根据你独特的心脏形状和信号判断你是否患有心脏病。
图中,不同颜色代表某个时间点分布在身体表面的心电电压值。其中,左边展示的是健康状态下的体表电压,右边展示了患心脏病时的体表电压。右边躯干表面的红圈则对应了临床医生通常诊断心脏病时寻找的标志。
为了改善心电图测量技术,研究人员利用了计算机科学领域的最新成果"教"计算机如何读取心脏电信号。结合了机器学习之后,心电图能向我们展示的有关心脏的信息,比以往任何时候都要多。
机器学习是如何工作的?
机器学习是研究人员用来教计算机识别数据集中独特特征的一种技术,它识别的这些特征是肉眼难以分辨的。研究人员为计算机提供了多套不同特征的分类数据,然后让它学习到底是哪些特征把这些数据划分成了不同的类别。计算机检测到的特征往往是微妙和复杂的,人类难以区分。一旦计算机知道了哪些特性对应着不同的类别,它就能用这些知识对新的数据集进行分类。
我们如何使用机器学习?
我们用机器学习来检测能第一时间预测心脏病的心脏信号变化。方法是把来自心脏的电信号分离出来,模拟心脏病发作,并检查模拟前、模拟中和模拟后的电信号变化。然后让计算机读取这些信号,将它们分成"有心脏病"和"没有心脏病"两个类别。和人类观察者相比,计算机诊断心脏病的速度提高了10%,准确率也提高了32%。机器学习算法发现的每一个额外的信号都有可能避免误诊。
心脏病检测的前景
使用机器学习帮助医生诊断心脏病,正在推动心脏病学领域的发展。医生和医护人员很快就能有更好的工具来检测和治疗心脏病了。这一工具甚至还能帮助那些因为基因或环境因素,具有心脏病高发风险的人群。这项研究或许能为医务人员了解和诊断心脏病提供一种新的途径,甚至让心脏病导致的死亡成为历史。
如果你曾经因为胸口疼痛去看过医生,不妨留意一下他的助手是谁,很有可能只是一台电脑。
领取专属 10元无门槛券
私享最新 技术干货