学习
实践
活动
专区
工具
TVP
写文章

NASA正在通过机器学习搜索远程行星的望远镜数据

作为努力识别遥远的行星的努力的一部分,美国宇航局已经建立了一个众包项目,其中志愿者搜索望远镜图像以寻找恒星周围碎片盘的证据,这是外行星的良好指标。来自一份报告:使用该项目的结果,麻省理工学院的研究人员现在已经培训了一个机器学习系统来搜索碎片盘本身。搜索的规模需要自动化:仅通过美国宇航局的宽域红外勘测探测器(WISE)任务累积的数据中就有将近7.5亿个可能的光源。在测试中,机器学习系统97%的时间同意碎片圆盘的人类识别。研究人员还训练了他们的系统,根据它们含有可检测的系外行星的可能性来评估碎片。在一篇描述“天文学和计算”杂志的新着作的论文中,麻省理工学院的研究人员报告说,他们的系统确定了367个以前未经检验的天体,为了进一步研究的特别有希望的候选行星。

  • 发表于:
  • 原文链接http://science.slashdot.org/story/18/04/05/1320206/computer-searches-telescope-data-for-evidence-of-distant-planets
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

关注

腾讯云开发者公众号
10元无门槛代金券
洞察腾讯核心技术
剖析业界实践案例
腾讯云开发者公众号二维码

扫码关注腾讯云开发者

领取腾讯云代金券