昨天一个同行问了一个问题:
viewdata = np.memmap(path, shape = (), mode = 'r',offset = 0,
dtype = '({})i4,'.format(4))
这个语句中,dtype = '({})i4,'.format(4)很令人费解,到底是啥意思?
根据python 的 format() 函数,dtype = '({})i4,'.format(4) 实际上是dtype = '(4)i4,'
i4是32位有符号整数,但放在一块儿是啥意思呢?
我比较少使用numpy,甚至电脑都没有装它。为了彻底明白它的含义,先看看memmap的定义:
classmemmap(ndarray):
"""Create a memory-map to an array stored in a *binary* file on disk.
Memory-mapped files are used for accessing small segments of large files
on disk, without reading the entire file into memory. NumPy's
memmap's are array-like objects. This differs from Python's ``mmap``
module, which uses file-like objects.
This subclass of ndarray has some unpleasant interactions with
some operations, because it doesn't quite fit properly as a subclass.
An alternative to using this subclass is to create the ``mmap``
object yourself, then create an ndarray with ndarray.__new__ directly,
passing the object created in its 'buffer=' parameter.
This class may at some point be turned into a factory function
which returns a view into an mmap buffer.
Delete the memmap instance to close the memmap file.
Parameters
----------
filename : str, file-like object, or pathlib.Path instance
The file name or file object to be used as the array data buffer.
dtype : data-type, optional
The data-type used to interpret the file contents.
Default is `uint8`.
mode : {'r+', 'r', 'w+', 'c'}, optional
The file is opened in this mode:
+------+-------------------------------------------------------------+
| 'r' | Open existing file for reading only. |
+------+-------------------------------------------------------------+
| 'r+' | Open existing file for reading and writing. |
+------+-------------------------------------------------------------+
| 'w+' | Create or overwrite existing file for reading and writing. |
+------+-------------------------------------------------------------+
| 'c' | Copy-on-write: assignments affect data in memory, but |
| | changes are not saved to disk. The file on disk is |
| | read-only. |
+------+-------------------------------------------------------------+
Default is 'r+'.
offset : int, optional
In the file, array data starts at this offset. Since `offset` is
measured in bytes, it should normally be a multiple of the byte-size
of `dtype`. When ``mode != 'r'``, even positive offsets beyond end of
file are valid; The file will be extended to accommodate the
additional data. By default, ``memmap`` will start at the beginning of
the file, even if ``filename`` is a file pointer ``fp`` and
``fp.tell() != 0``.
shape : tuple, optional
The desired shape of the array. If ``mode == 'r'`` and the number
of remaining bytes after `offset` is not a multiple of the byte-size
of `dtype`, you must specify `shape`. By default, the returned array
will be 1-D with the number of elements determined by file size
and data-type.
order : {'C', 'F'}, optional
Specify the order of the ndarray memory layout:
:term:`row-major`, C-style or :term:`column-major`,
Fortran-style. This only has an effect if the shape is
greater than 1-D. The default order is 'C'.
Attributes
----------
filename : str or pathlib.Path instance
Path to the mapped file.
offset : int
Offset position in the file.
mode : str
File mode.
Methods
-------
flush
Flush any changes in memory to file on disk.
When you delete a memmap object, flush is called first to write
changes to disk before removing the object.
See also
--------
lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.
Notes
-----
The memmap object can be used anywhere an ndarray is accepted.
Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns
``True``.
Memory-mapped files cannot be larger than 2GB on 32-bit systems.
When a memmap causes a file to be created or extended beyond its
current size in the filesystem, the contents of the new part are
unspecified. On systems with POSIX filesystem semantics, the extended
part will be filled with zero bytes.
Examples
--------
>>> data = np.arange(12, dtype='float32')
>>> data.resize((3,4))
This example uses a temporary file so that doctest doesn't write
files to your directory. You would use a 'normal' filename.
>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join(mkdtemp(), 'newfile.dat')
Create a memmap with dtype and shape that matches our data:
>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
memmap([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]], dtype=float32)
Write data to memmap array:
>>> fp[:] = data[:]
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
>>> fp.filename == path.abspath(filename)
True
Deletion flushes memory changes to disk before removing the object:
>>> del fp
Load the memmap and verify data was stored:
>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
Read-only memmap:
>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
False
Copy-on-write memmap:
>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
True
It's possible to assign to copy-on-write array, but values are only
written into the memory copy of the array, and not written to disk:
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
>>> fpc[0,:] = 0
memmap([[ 0., 0., 0., 0.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
File on disk is unchanged:
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
Offset into a memmap:
>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
"""
__array_priority__ = -100.0
def__new__(subtype, filename, dtype=uint8, mode='r+', offset=0,
shape=None, order='C'):
# Import here to minimize 'import numpy' overhead
importmmap
importos.path
try:
mode = mode_equivalents[mode]
exceptKeyError:
ifmodenot invalid_filemodes:
raiseValueError("mode must be one of %s"%
(valid_filemodes +list(mode_equivalents.keys())))
ifhasattr(filename, 'read'):
fid = filename
own_file =False
elifis_pathlib_path(filename):
fid = filename.open((mode =='c'and'r'ormode)+'b')
own_file =True
else:
fid = open(filename, (mode =='c'and'r'or mode)+'b')
own_file =True
if(mode =='w+')andshapeis None:
raise ValueError("shape must be given")
fid.seek(0, 2)
flen = fid.tell()
descr = dtypedescr(dtype)
_dbytes = descr.itemsize
ifshapeis None:
bytes= flen - offset
if(bytes% _dbytes):
fid.close()
raiseValueError("Size of available data is not a "
"multiple of the data-type size.")
size =bytes// _dbytes
shape = (size,)
else:
if notisinstance(shape,tuple):
shape = (shape,)
size = 1
forkinshape:
size *= k
bytes= long(offset + size*_dbytes)
ifmode =='w+'or(mode =='r+'andflen
fid.seek(bytes- 1, 0)
fid.write(b'\0')
fid.flush()
ifmode =='c':
acc = mmap.ACCESS_COPY
elifmode =='r':
acc = mmap.ACCESS_READ
else:
acc = mmap.ACCESS_WRITE
start = offset - offset % mmap.ALLOCATIONGRANULARITY
bytes-= start
array_offset = offset - start
mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm,
offset=array_offset, order=order)
self._mmap = mm
self.offset = offset
self.mode = mode
ifisinstance(filename, basestring):
elifis_pathlib_path(filename):
self.filename = filename.resolve()
# py3 returns int for TemporaryFile().name
elif(hasattr(filename,"name")and
isinstance(filename.name, basestring)):
# same as memmap copies (e.g. memmap + 1)
else:
self.filename =None
ifown_file:
fid.close()
returnself
def__array_finalize__(self, obj):
ifhasattr(obj,'_mmap') and np.may_share_memory(self, obj):
self._mmap = obj._mmap
self.filename = obj.filename
self.offset = obj.offset
self.mode = obj.mode
else:
self._mmap =None
self.filename =None
self.offset =None
self.mode =None
defflush(self):
"""
Write any changes in the array to the file on disk.
For further information, see `memmap`.
Parameters
----------
None
See Also
--------
memmap
"""
ifself.baseis not None andhasattr(self.base, 'flush'):
def__array_wrap__(self, arr, context=None):
arr = super(memmap, self).__array_wrap__(arr, context)
# Return a memmap if a memmap was given as the output of the
# ufunc. Leave the arr class unchanged if self is not a memmap
# to keep original memmap subclasses behavior
ifselfisarrortype(self) is notmemmap:
returnarr
# Return scalar instead of 0d memmap, e.g. for np.sum with
# axis=None
ifarr.shape == ():
returnarr[()]
# Return ndarray otherwise
returnarr.view(np.ndarray)
def__getitem__(self, index):
res =super(memmap, self).__getitem__(index)
iftype(res)ismemmapandres._mmapis None:
return res.view(type=ndarray)
returnres
-------------------------------------
仔细看了上面的定义和举例,并没有得到答案。
然后,搜索了各种网,仍然没有答案......
根据PYTHON的知识来推断:
shape = (),是个空的元组,说明memmap返回的是个一维数组,
dtype = '(4)i4,',数组元素是32位有符号整数,'(4)i4,' 这个逗号是用来产生元组的,那么dtype = '(4)i4,'这个4会不会是一维数组的元素个数呢?怎么验证?
实践出真知!
1,下载安装numpy。
2,写个名为“test.py”的文件:“abcdefghijklmnop”
3,写个简单程序:
>>>importnumpyasnp
>>>classNumpytest:
defzwj(self,size):
int_1D_array = np.memmap(
'test.py',shape = (),mode ='r',
offset = 0,
dtype ='({})i4,'.format(size)
)
returnint_1D_array
>>>t = Numpytest()
>>>t.zwj(1)
memmap(1684234849)
>>>t.zwj(2)
memmap([1684234849, 1751606885])
>>>t.zwj(4)
memmap([1684234849, 1751606885, 1818978921, 1886350957])
这完全证明了:dtype = '(4)i4,'这个4是一维数组的元素个数。
(另外,memmap定义中是个类,在使用中完全象一个函数,python中的类和函数没有完全的区别)
领取专属 10元无门槛券
私享最新 技术干货