机器学习实战之决策树

-- Illustrations byCornelius Bierer--

决策树的算法可谓是贴近我们的生活,通过下面的案例,你就会发现我们每天都在有意无意的使用着决策树算法(好厉害的样子)。

小明同学每天早上都要去学校,可步行、乘公交和坐隔壁老王叔叔的车(皮一下很开心)。这时,小明就开始做决策了:首先看天气,不下雨时就选择步行去学校;下雨时就看隔壁老王叔叔是否有空,有空就乘老王的车去学校,没空就选择乘公交去学校。如图所示。

案例

决策树定义

通过上述案例,就可以对决策树下定义了:上图就是决策树。决策树由结点和有向边组成。结点有两种类型:内部节点和叶节点,内部节点表示一个特征或属性(天气,是否有空),叶节点表示一个类(步行、乘公交和坐隔壁老王叔叔的车)。

决策树算法原理

那怎么通过决策树算法来构造这棵树呢?(难道是上帝之手么?)上述案例较简单,我们现在提出一个很经典的案例,如图所示,我们首先到底是通过天气、湿度还是风级来进行决策了?这里就要提出熵和信息增益。

案例

首先,我们看什么是熵。简单来说,熵是描述事物的混乱程度的(也可以说是不确定性)。例如:中国足球进入世界杯,这个不确定性可能是0,所以熵可能就是0;6面的色子的不确定性比12面色子的要低,所以熵也会比其低。现在就来看熵的公式:H = -∑ni=1p(xi)log2p(xi) 那6面色子的熵:1/6*log21/6的6倍,也就是2.585 以此类推,那12面的熵就是:3.585 最后,我们计算下该案例的信息熵:不打球为5,打球为9,因此熵计算为:

信息增益

到底先按哪个特征划分数据集呢?我们有个原则,就是将无序的数据变得有序,换句话说,就是让熵变小,变的越小越好。而信息增益就是划分数据集前后熵的变化,这里就是要让信息增益越大越好。 我们以天气为例,计算划分后的信息增益:

晴天时:2/5打球,3/5不打球,熵为:

阴天熵:0

雨天熵:0.971

天气

天气为晴天、阴天和雨天的概率为5/14,4/14和5/14,所以划分后的熵为:5/14 * 0.971+4/14 * 0+5/14 * 0.971得0.693,信息增益为0.940-0.693为0.247,同理可以求出其他特征的信息增益。

这里的天气信息增益最大,所以选择其为初始的划分依据。

选择完天气做为第一个划分依据后,能够正确分类的就结束划分,不能够正确分类的就继续算其余特征的信息增益,继续前面的操作,结果如图所示。

结果

伪代码

所以决策树是一个递归算法,伪代码如下:

决策树之海洋生物分类

问题描述与数据

数据为判断是否为鱼类,有两个特征:

在水中是否生存

是否有脚蹼

案例

这里需要我们自己手动构造数据:

这里的dataSet为数据,labels是两个特征的名称。

计算熵

这里我们定义一个计算数据集熵的函数:

这个代码比较简单,就是对传入的数据,以最后一列(也就是分类label)求熵。

划分数据集

首先设置一个划分数据集的函数,参数为:待划分的数据,划分的特征和返回的特征值,该函数会在choose函数中被调用,用于计算最好的划分特征。

创建树

在所有特征使用完时,也没法对数据进行彻底的划分时,就需要使用多数表决来确定叶子节点的分类,代码如下,类似前文中KNN中的排序。

最后就是创建树的代码:

这里有两个终止递归的条件:一是所有类别能正确的划分了,二是特征使用完成。

结果

算法优缺点

优点:利于理解

缺点:容易过拟合

∞∞∞∞∞

IT派 -

持续关注互联网、区块链、人工智能领域

邀你加入{ IT派AI机器学习群 }

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180611B0818Y00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券