机器学习实战之树回归

“回归”与“树”

在讲解树回归之前,我们看看回归和树巧妙结合的原因。

线性回归的弊端

线性回归需要拟合所有样本点,在特征多且特征关系复杂时,构建全局模型的想法就显得太难。

实际生活中,问题很大程度上不是线性的,而是非线性的,所以线性回归的很容易欠拟合。

传统决策树弊端与改进

决策树可以解决数据的非线性问题,而且直观易懂,是否可以通过决策树来实现回归任务?我们来回顾下之前讲过的决策树方法,其在划分子集的时候使用的方法是信息增益(我们也叫ID3方法),其方法只针对标称型(离散型)数据有效,很难用于回归;而且ID3算法切分过于迅速,容易过拟合,例如:一个特征有4个值,数据就会被切为四份,切分过后的特征在后面的过程中不再起作用。CART(分类回归树)算法可以解决掉ID3的问题,该算法可用于分类和回归。我们来看看针对ID3算法的问题,CART算法是怎样解决的。

信息增益无法切分连续型数据,如何计算连续型数据的混乱程度?其实,连续型的数据计算混乱程度很简单,根本不需要信息熵的理论。我们只需要计算平方误差的总值即可(先计算数据的均值,然后计算每条数据到均值的差值,进行平方求和)。

ID3方法切分太快,CART算法采用二元切分。

回归树

基于CART算法,当叶节点是分类值,就会是分类算法;如果是常数值(也就是回归需要预测的值),就可以实现回归算法。这里的常数值的求解很简单,就是该划分数据的均值。

数据情况

首先,利用代码带入数据,数据情况如图所示。

代码

其实CART算法直观(代码却比较多。。。),其实只用做两件事:切分数据和构造树。我们以这个数据为例:首先切分数据,找到一个中心点(平方误差的总值最小),这样就完成了划分(左下和右上),然后构造树(求左下和右上的均值为叶子节点)。我们来看代码:

看下结果,和我想的是一致的。

模型树

回归树的叶节点是常数值,而模型树的叶节点是一个回归方程。

数据情况

读入数据进行可视化,你会发现,这种数据如果用回归树拟合效果不好,如果切分为两段,每段是一个回归方程,就可以很好的对数据进行拟合。

代码

前面的代码大部分是不变的,只需要少量修改就可以完成模型树。

结果如图所示:

算法优缺点

优点:可对复杂数据进行建模

缺点:容易过拟合

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180619G1NMST00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券