NumPy数组详解 玩转NumPy(1)

转载是一种动力 分享是一种美德

1

什么是Numpy数组

NumPy是Python中科学计算的基础软件包。它是一个提供多维数组对象,多种派生对象(如被屏蔽的数组和矩阵)以及用于数组快速操作的例程,包括数学,逻辑,形状操作,排序,选择,I / O ,离散傅立叶变换,基本线性代数,基本统计运算,随机模拟等等。

2

Numpy数组的优势

NumPy包的核心是ndarray对象。这封装了同类数据类型的n维数组,其中许多操作都是在编译代码中执行以获得性能。NumPy数组和标准Python序列之间有几个重要的区别:

NumPy数组在创建时具有固定大小,与Python列表(可以动态增长)不同。更改ndarray的大小将创建一个新数组并删除原始数组。

NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。例外情况:可以有(Python,包括NumPy)对象数组,从而允许不同大小元素的数组。

NumPy数组有助于对大量数据进行高级数学和其他类型的操作。通常,这些操作的执行效率更高,代码更少,而使用Python内置序列的代码更少。

3

NumPy的基本操作

NumPy的主要对象是齐次多维数组。它是一个元素表(通常是数字),所有相同类型,由正整数的元组索引。在NumPy维度被称为轴。NumPy的数组类中有很多重要的属性,下面列举出比较常见的属性。首先我们创建一个数组类:

nrange中有很多种要的属性:

ndarray.ndim

阵列的轴数(维度)

ndarray.shape

数组的尺寸。这是一个整数的元组,表示每个维度中数组的大小。对于具有n行和m列的矩阵,将是。因此元组的长度是轴的数量,

ndarray.size

数组元素的总数。这等于元素的产物

ndarray.dtype

一个描述数组中元素类型的对象。可以使用标准的Python类型创建或指定dtype。另外NumPy提供它自己的类型。numpy.int32,numpy.int16和numpy.float64就是一些例子

ndarray.itemsize

数组中每个元素的字节大小。例如,类型元素数组有8(= 64/8),而其中一个类型有4(= 32/8)。这相当于

ndarray.data

该缓冲区包含数组的实际元素。通常,我们不需要使用此属性,因为我们将使用索引设施访问数组中的元素

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180626G20KU000?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

同媒体快讯

扫码关注云+社区

领取腾讯云代金券