最热门的机器学习开源项目7月份TOP3

从150多篇相关论文中取得前三,请享用!

Image Outpainting

这是我在本系列中介绍的最酷的开源库之一。“去水印”(Inpainting)一直是最近的一个趋势概念,但由斯坦福大学的几位研究人员设计的“Outpainting”技术却恰恰相反。“Outpainting”对 GAN 在去水印方面的用途进行了扩展,用于估计和想象超出现有图像范围的部分可能是什么样子的,然后通过算法将图像扩展到现有边界之外。正如上图所示,效果非常好。

这个开源库是基于 Keras 实现的。你可以从头开始构建模型,也可以使用开源库作者提供的模型。无论选择哪种方式,都去试一试吧!

地址:https://github.com/bendangnuksung/Image-OutPainting

GANimation

上面的这些面孔会让你对这个开源库感到兴奋吗?绿色边框内的图像是原始图像,剩下的是使用 GANimation 改变了主体面部表情后的图像。这种方法稍显复杂,但如果你对深度学习感兴趣,一定会深入探索的。

作者为入门提供了所需的一切:初学者指南、先决条件、数据准备资源,当然还有 Python 代码。还在等什么,快到碗里来!

地址:https://github.com/albertpumarola/GANimation

MatchZoo

虽然这个开源库严格来说并不是上个月创建的,但最近这个开源库推出了一个重大更新。MatchZoo 基本上是一个用于文本匹配的工具包。它的目的是为了设计、比较和分享各种深层文本匹配模型。MatchZoo 可用于文档检索、会话响应排名、问题回答和释义识别等。

其他一些深度匹配方法有 DRMM、MatchPyramid、MV-LSTM、aNMM、DUET 等。查看这个开源库,以获取有关如何安装和使用这个库的详细信息。

地址:https://github.com/faneshion/MatchZoo

Reddit 上的讨论

我应该学习哪些深度学习论文?

地址:https://old.reddit.com/r/MachineLearning/comments/8vmuet/d_what_deep_learning_papers_should_i_implement_to/

如果你是深度学习新手,那么就一定要读一读这个主题。很多深度学习专家在最近发表的论文中提出了他们的观点(还提供了大量的链接),你应该阅读这些论文。这样可以加强你所学到的知识,并可以让你与最新的技术保持同步。

如果你有深度学习经验,这将刷新你的概念,或告诉你在这个多元化的领域发生了哪些事情。学无止境,因此我建议你查看一下所有的资源。你还应该阅读其他数据科学家提供的意见,你可以将这些意见增加到你自己的观点中。

科学在 Google Brain/FAIR/DeepMind 等组织中的应用情况

地址:https://old.reddit.com/r/MachineLearning/comments/8yvlzy/d_debate_about_science_at_organizations_like/

这个标题足以引起数据科学家的注意。这个讨论起源于 Twitter 上的关于大型技术组织如何使用科学技术的辩论。虽然辩论是以悲观的观点作为开始,但却从那些在这些公司工作过的人那里获得了更多积极正面的观点。

你不仅可以了解到 Google Brain 如何定义和使用科学,还可以了解到数据科学从业人员对当前科学应用状况的看法。

一些理论方面的好书

地址:https://old.reddit.com/r/MachineLearning/comments/8wcjcm/d_what_are_some_good_books_to_get_more/

如果你想从事机器学习研究,需要了解很多理论知识,包括核心数学、概率论等。这个主题列出了一些关于各种机器学习概念的书籍。

这个主题还提供了大量的建议(差不多 100 条评论!)和链接,从高级机器学习到强化学习的介绍,这个主题简直就是顶级资源的金矿。

讨论人工智能将如何影响当前和未来的工作

地址:https://www.reddit.com/r/artificial/comments/8zx2mx/artificial_intelligence_will_create_as_many_jobs/

这是几十年来一直在讨论的话题,并且随着最近对 ML 和 AI 兴趣的增加而变得更加突出。尽管专家在尽力减轻恐惧,但这种担忧仍然存在。这个主题包含了来自 AI 爱好者和专家的意见,可以了解他们如何看待 AI 对不同国家的工作的影响。

主题中还提供了大量的统计数据和链接,可以帮助你了解人工智能的发展方向。你也可以参与讨论,参与越多,对数据科学的信心就越大。

人们在数据可视化中犯的常见错误

地址:https://www.reddit.com/r/datascience/comments/8wj1nr/play_your_charts_right_an_illustrated_collection/

数据可视化是机器学习项目的关键部分,不过它也有独立的应用程序,如仪表盘、报告等。商业智能是一个正在蓬勃发展的领域,随着越来越多的人进入,他们需要注意人们经常会犯的一些错误。主题中给出的图表很好地说明了这一点。

这是你在数据科学之旅中遇到的一个非常重要的主题。你不一定要虔诚地跟进每一个观点,但了解该领域的领导者们在想什么还是很有好处的。

英文原文:

https://www.analyticsvidhya.com/blog/2018/08/best-machine-learning-github-repositories-reddit-threads-july-2018/

内容来自网络,侵删

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180808A1NREF00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码关注腾讯云开发者

领取腾讯云代金券