为什么要学数据科学中的 Python?

大数据观察

了解大数据,关注大数据观察吧!

每个想了解最新大数据资讯的人,都关注了我

文 / 数据君

近一年势头不灭的 Python 在数据分析领域,是专家们的必备技能。随着 IT 行业的增长,对有经验的数据科学家的需求也水涨船高,而 Python 也一跃而成最受欢迎的语言。本文旨在介绍分析数据的基本知识,并利用 Python 创建一些漂亮的数据可视化。

概要

为什么要学数据科学中的 Python?

Python 简介

为数据科学中的 Python 安装 Jupyter

Python 的基本知识

用于数据科学的 Python 库

Demo:实际应用

数据科学领域,非 Python 语言莫属?

Python 是最适合数据科学家的语言,这一点毫无争议。下面几点可以帮你理解为什么从事数据科学的人选择了 Python:

Python 是一门免费,灵活且强大的开源语言。

Python 能减少一半的开发时间,同时提供简洁易读的语法。

使用 Python 可以进行数据操作、数据分析和可视化。

Python 提供功能强大的库,用于机器学习应用和其他科学计算。

你知道最大的好处是什么吗?数据科学家是目前收入最高的职位之一,根据 Indeed.com 的数据,平均年薪为 $130,621

Python 由 Guido Van Rossum 于 1989 年创建。它是个解释语言,拥有动态语义。它在所有的平台上可以免费使用。Python 是:

面向对象

高级语言

容易学

面向过程

为数据科学中的 Python 安装 Jupyter

我们先来在自己的系统上安装 Jupyter。请按照以下步骤进行:

第 1 步:访问 https://jupyter.org/

第 2 步:点击“Try in your browser”或“Install the Notebook”

我建议你使用 Anaconda 发行版(https://www.anaconda.com/download/)安装 Python 和 Jupyter。装好Jupyter 之后,可以在命令行中输入“Jupyter Notebook”即可在默认浏览器中打开。现在我们在 Jupyter 上写个最基本的程序。

name=input("Enter your Name:")

print("Hello", name)

要运行这段代码,可以按下“Shift+Enter”,即可查看输出。如下面的截图所示:

数据科学中的 Python 的基础

现在可以开始编程了。为了编程,你需要先了解以下的基础知识:

变量:“变量”这个术语指内存中的一块保留的位置,用于保存值。在Python中,使用变量之前不需要定义变量,更不需要声明变量的类型。

数据类型:Python 支持多种数据类型,这些数据类型定义了变量上可能的操作,以及它们的存储方式。数据类型包括数值、列表、字符串、元组、集合和字典。

操作符:操作符可以操纵操作数中的值。Python 中的操作符包括数值操作符、列表操作符、字符串操作符、元组操作符、集合操作符和字典操作符。

条件语句:条件语句可以根据某个条件执行一组语句。有三个条件语句:if、elif 和 else。

循环:循环用来反复执行一小段代码。有三种循环,分别是while、for和嵌套循环。

函数:函数用来将代码分隔成有意义的功能块,以便更好地组织代码,让代码更易读,重用代码,还能节省时间。

关于 Python的更多信息和实际的实现,可以参考这篇文章:Python 入门(https://www.edureka.co/blog/python-tutorial/)。

数据科学中的 Python 库

这是 Python 在数据科学中发挥力量的部分。Python 拥有大量用于科学计算、分析、可视化等的库。一些库如下:

Numpy - NumPy 是 Python 在数据科学方面的核心库,它的名字的意思是“数值计算用的Python”。它可以用于科学计算,包含了强大的 n 维数组对象,并提供了许多工具与 C、C++ 等语言集成。它还可以用作多维容器,用来存储任意数据,从而进行各种 NumPy 操作和特殊功能。

Matplotlib - Matplotlib 是个强大的可视化 Python 库。它可以用于Python 脚本、shell、Web 应用服务器上,还可以用于其他 GUI 工具中。可以用它绘制各种图表,也可以把多种图表画在一起。

Scikit-learn - Scikit-learn 是最引人注目的库之一,通过它可以用 Python 实现机器学习。这个免费的库包含了用于数据分析和数据挖掘的简单有效的工具。用它可以实现各种算法,如逻辑回归。

Seaborn - Seaborn 是个统计绘图的 Python 库。在数据科学中使用 Python 时,可以使用 matplotlib(用于二维可视化)和 Seaborn,后者有漂亮的样式和高级接口可以用于绘制统计图表。

Pandas - Pandas 是数据科学中的重要的 Python 库。它用来操作数据和分析数据。它很适合不同类型的数据,如表格、有序时间序列、无序时间序列、矩阵等。这里有个视频(https://youtu.be/B42n3Pc-N2A)演示了如何在处理数据之前使用 Pandas 进行数据分析。

主题 |Python

插图 | 网络来源

作 者 介 绍

数据君:)

了解大数据,关注大数据观察

部分图文来自网络,侵权则删

我想给你一个理由 继续面对这操蛋的生活

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180919B1GZUZ00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券