液压系统故障诊断技术浅议

【摘 要】本文将综合分析了国内工程机械液压技术的现状,并对液压系统故障产生的原因进行了分析,对故障诊断技术的发展趋势进行了展望,以便为推进我国工程液压行业继续向前发展提供依据。

【关键词】液压系统;现状;发展趋势;故障诊断技术

一、液压系统故障诊断技术发展现状

液压系统故障诊断技术是随着液压设备不断高度自动化和复杂化以及对液压系统工作可靠性要求越来越高而发展起来的,是针对现代液压设备需要及时排除液压故障而提出来的,是将医疗诊断中的基本思想推广到液压工程技术而形成的,是建立在液压控制理论,信息理论和电子技术、传感器技术、人工智能技术等基础上的一门综合性新技术。液压传动是三大传动技术之一,与机械传动、电力传动相比,液压传动系统具有其独特的优点,即广泛的工艺适应性、优良的控制性能和较低廉的成本,并且功率大、响应快、精度高,已经广泛应用于冶金、制造等领域。

二、液压系统的故障原因分析

(1)主观诊断法。主观诊断法主要是依靠简单的诊断仪器,凭借个人的实践经验,判别故障发生的部位及其原因。这种方法要求诊断人员掌握丰富的故障机理知识和诊断经验,需利用系统或元件的结构、模型和功能等方面的知识,综合分析才能了解。

(2)基于模型诊断法。基于模型的诊断法是先运用一定的数学手段描述系统某些可测量特征量,这些特征量在幅值、相位、频率及相关性上与故障源之间存在着联系,然后通过测量、分析、处理这些特征量信号,来判断故障源所在。这种方法实质上是以传感器技术和动态测试技术为手段,以信号处理和建模处理为基础的诊断技术。

(3)智能诊断技术。液压系统故障智能诊断技术是人工智能技术在液压系统故障诊断领域中的应用,它是计算机技术和液压系统故障诊断技术相互结合与发展进步的结果。智能诊断的本质特点是模拟人脑的机能,又能比人脑更有效地获取、传递、处理、再生和利用故障信息,成功地识别和预测诊断对象的状态。因此,智能诊断技术是液压系统故障诊断的一个极具生命力的发展方向。目前的智能诊断研究主要从两个方面开展:基于专家系统的故障智能诊断技术和基于神经网络的液压系统故障智能诊断技术。

三、液压故障诊断技术发展趋势

(1)多种知识表示方法的结合。近几年来,在面向对象程序设计技术的基础上,发展起来了一种称为面向对象的知识表示方法,为这一问题提供了一条很有价值的途径。在面向对象的知识表示方法中,传统的知识表示方法如规则、框架、语义网络等可以被集中在统一的对象库中,而且这种表示方法可以对诊断对象的结构模型进行比较好的描述,在不强求知识分解成特定知识表示结构的前提下,以对象作为知识分割实体,明显要比按一定结构强求知识的分割来得自然、贴切。

(2)经验知识与原理知识的紧密结合。关于深浅知识的结合问题,可以各自使用不同的表示方法,从而构成两种不同类型的知识库,每个知识库有各自的推理机,它们在各自的权利范围内构成子系统,两个子系统再通过一个执行器综合起来构成一个特定诊断问题的专家系统。这个执行器记录诊断过程的中间结果和数据,并且还负责经验与原理知识之间的“切换”。这样在诊断过程中,通过两种类型知识的相互作用,使得整个系统更加完善,功能更强。

(3)多种智能故障诊断方法的混合。混合智能故障诊断系统的发展有如下趋势:由基于规则的系统到基于混合模型的系统、由领域专家提供知识到机器学习、由非实时诊断到实时诊断、由单一推理控制策略到混合推理控制策略等。

(4)虚拟现实技术将得到重视和应用。虚拟现实技术是继多媒体技术以后另一个在计算机界引起广泛关注的研究热点,它有四个重要的特征,即多感知性、对存在感、交互性和自主性。从表面上看,它与多媒体技术有许多相似之处。

(5)数据库技术与人工智能技术相互渗透。人工智能技术多年来曲折发展,虽然硕果累累,但比起数据库系统的发展却相形见绌。其主要原因在于缺乏像数据库系统那样较为成熟的理论基础和实用技术。人工智能技术的进一步应用和发展表明,结合数据库技术可以克服人工智能不可跨越的障碍,这也是智能系统成功的关键。对于故障诊断系统来说,知识库一般比较庞大,因此可以借鉴数据库关于信息存储、共享、并发控制和故障恢复技术,改善诊断系统性能。

四、结语

液压系统故障具有隐蔽性、复杂性、随机性、模糊性及分散性等特点,尽管国内外学者对液压系统故障诊断进行了深入广泛的研究,但实际诊断过程中仍面临许多问题。随着相关学科的新技术、新理论的不断引入和融合,结合传统诊断方法,探索和发展更多的智能诊断技术,液压系统的故障诊断技术必将得到进一步完善和发展。将多种智能诊断方法相互融合,相互取长补短,并结合与多媒体技术、网络技术、多传感器信息融合技术、虚拟现实技术等技术,对液压系统故障进行综合评判和诊断,将是今后液压系统故障诊断技术发展的趋势。

声明:文章来自于网络,作者未知,如涉侵权,请留言或直接联系编辑删除

Ta们都在看公众号:设备人

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181219B069OZ00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码关注腾讯云开发者

领取腾讯云代金券