首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

当AI遇上量子计算:神经网络量子纠错系统或超越传统纠错策略、神经形态芯片与神经形态计算机

来源:sciencedaily、新智元

德国马克斯·普朗克光学研究所的研究人员提出一种基于人工智能算法的量子纠错系统,通过足够的训练,这种方法有望超过其他纠错策略。

量子计算机可以解决传统计算机无法完成的复杂任务。然而,量子态(quantum states)对来自外界的持续干扰极其敏感。研究人员希望使用基于量子纠错(quantum error correction)的主动保护来解决这个问题。

近日,德国马克斯·普朗克光学研究所所长Florian Marquardt及其团队在物理期刊physical review X上发表论文Reinforcement Learning with Neural Networks for Quantum Feedback,提出一种基于人工智能算法的量子纠错系统

2016年,人工智能程序AlphaGo在围棋比赛中击败了世界上最强的人类棋手,举世瞩目。鉴于一局围棋中的移动组合比估计的宇宙中的原子的数量更多,它需要的不仅仅是处理能力。相反,AlphaGo利用了人工神经网络,它可以识别视觉模式,甚至能够学习。与人类不同,AlphaGo能够在短时间内练习下数十万局围棋,最终得以超越最优秀的人类棋手。

马克斯·普朗克研究所的研究人员正试图利用这种神经网络为量子计算机开发纠错学习的系统。

人工神经网络是一种模拟相互连接的神经细胞(神经元)行为的计算机程序——在这项研究中,大约有2000人工神经元相互连接。

“我们从计算机科学中获取最新的想法,并将其应用到物理系统,”Florian Marquardt说:“这样,我们可以从快速进步的AI领域获益。”

学习量子纠错:神经网络在执行任务时,人工神经元活动的可视化

图片来源:马克斯普朗克光学研究所

该研究的主要想法可以概括为一下几点:

人工神经网络或能够超过其他纠错策略

在论文中,该团队证明了人工神经网络能够自我学习如何执行一项对未来量子计算机操作至关重要的任务——量子纠错。甚至通过足够的训练,这种方法有望超过其他纠错策略

为了理解它的工作原理,首先需要了解量子计算机的工作方式。量子信息的基础是量子比特(quantum bit,或qubit)。与传统的数字比特不同,量子比特不仅可以采用0和1两个态,而且可以采用两种态的叠加。

在量子计算机的处理器中,甚至有多个量子比特作为联合态的一部分叠加在一起。这种纠缠让量子计算机具有解决某些复杂任务的强大处理能力,而这些任务是传统计算机毫无办法的。

但是,量子信息对环境噪声非常敏感。量子世界的这一特性意味着量子信息需要定期修正——即量子纠错。然而,量子纠错需要的操作不仅复杂,而且必须要保持量子信息本身的完整。

量子纠错就像一场规则奇特的围棋游戏

Marquardt在介绍该研究的工作原理时提出了一个有趣的类比,他说:“你可以把量子计算机的元素想象成一块围棋棋盘,量子比特像棋子一样分布在整个棋盘上。”但是,与传统的围棋游戏相比有一些关键的区别:所有棋子都已经排列在棋盘上,而且每一枚棋子都是一面是白色一面黑色。一种颜色对应0,另一种颜色对应1,并且量子围棋游戏中的移动相当于将棋子翻过来。根据量子世界的规则,棋子也可以是黑白混合在一起的灰色——代表量子态的叠加和纠缠。

在玩这个量子围棋游戏时,玩家——让我们称她为Alice——做出的动作是为了保留代表某种量子态的模式。这就是量子纠错操作。与此同时,她的对手竭尽全力摧毁这种模式。这代表实际的量子比特在其环境中经受的过多干扰的持续噪声。此外,量子围棋游戏难度特别大,因为还有一条特殊的量子规则:Alice是不允许看到棋盘的。只要一瞥见任何能揭示量子比特状态的场景,都会摧毁游戏目前敏感的量子状态。

问题是:在这么多限制下,她如何才能做出正确的举动?

辅助量子比特揭示了量子计算机中的缺陷

在量子计算机中,这个问题是通过在存储实际量子信息的量子比特之间定位额外量子比特来解决的。可以采取间断的测量来监视这些辅助量子比特的状态,允许量子计算机的控制器识别故障所在的位置,并对这些区域中携带信息的量子比特执行纠错操作。

在作为类比的量子围棋游戏中,辅助量子比特由在实际游戏棋子之间分布的辅助棋子来表示。Alice可以偶尔看一眼,但只能看这些辅助棋子。

在这个研究中,Alice的角色由人工神经网络完成。研究人员的想法是,通过训练,网络将变得非常擅长这个角色,甚至可以超越人类所设计的纠正策略。

然而,当该团队研究一个包含五个模拟量子比特的例子时,他们发现仅用一个人工神经网络是不够的。由于网络只能收集关于量子比特状态的少量信息,它永远无法超越随机试错的策略。最终,这些尝试破坏了量子态,而不是纠正它。

一个神经网络使用它的先验知识来训练另一个神经网络

解决方案是加一个额外的神经网络,作为第一个网络的教师(teacher)。凭借其对量子计算机的先验知识,该教师网络能够训练其他网络——也就是它的学生——从而引导网络成功地进行量子纠错。但是,首先,教师网络本身需要充分了解量子计算机或需要控制的量子计算机组件。

原则上,人工神经网络使用奖励系统进行训练。对于量子纠错系统,要成功恢复原始量子态,实际的奖励是必要的。

“然而,如果在实现这个长期目标后再给予奖励,它需要尝试许多次纠错,实现目标需要的时间太长,”Marquardt解释说。

因此,他们开发了一种奖励系统,即在训练阶段也能激励教师神经网络采用有效的策略。在量子围棋游戏中,这个奖励系统将为Alice提供给定时间内游戏的总体状态,但不泄露细节。

学生网络可以通过自己的行动超越老师

“我们的第一个目标是让教师网络学会在没有人工协助的情况下成功地实现量子纠错操作,”Marquardt说。与学生网络不同,教师网络不仅可以基于测量结果,还可以基于计算机的整体量子状态来做到这一点。由教师网络训练的学生网络一开始会变得同样好,但通过自己的行为,可以变得更好。

除了量子计算机中的纠错之外,Florian Marquardt还设想了人工智能的其他应用。在他看来,物理学提供了许多系统,可以受益于人工神经网络的模式识别。

神经形态芯片与神经形态计算机

以深度学习为代表的人工神经网络是机器学习最重要的方法之一,在云端和终端都有非常广泛的应用。然而传统的CPU和GPU芯片在进行神经网络处理时遇到了严重的性能和能耗瓶颈。

神经形态计算能够大幅提升数据处理能力和机器学习能力,能耗和体积却要小得多,或将引领计算机微型化和人工智能的下一阶段。

目前,神经形态芯片已经进入工程化研发。IBM公司2014年8月所公布的百万神经元级别的TrueNorth芯片,在执行某些任务时,其能效可达传统中央处理器的数百倍,首次与人脑的大脑皮层有了可比之处。

根据嘉宾演讲内容,以下为论坛精要。

神经形态芯片新思路:ASIC之外的突破

首先是中科院计算所研究员、智能处理器研究中心主任陈云霁的演讲题目为《深度学习专用处理器》。

传统ASIC的思路无法解决深度学习处理的需求,寒武纪主要突破三大矛盾:

1、有限规模的硬件如何解决任意规模的算法;

2、结构固定的硬件怎么应对千变万化的算法;

3、能耗受限的硬件怎么支撑精度优先的算法;

针对上述三个矛盾,寒武纪分别做了以下三个努力:

1、硬件神经元虚拟化。

学术创新:通过分时复用,将有限规模的硬件虚拟成任意大规模的人工神经网络。

关键技术包括:

控制架构:支持硬件神经元的动态冲配置和运行时编程。

访存架构:分离式的输入神经元、输出神经元和突出的片上存储。

2、深度学习指令集。

学术创新:自动化抽取各种深度学习(机器学习)算法共性基本算子,设计首个深度学习指令集来处理这些算法。

关键技术包括:

算子聚类:自动化抽取算法核心片段,基于数据特性聚为少数几类。

运算架构:设计共性神经元电路,支持变精度流水级。

3、稀疏神经网络处理器结构。

学术创新:利用神经网对于计算误差的容忍能力,进行稀疏化神经网络处理,在有限的能耗下实现高精度的智能处理。

随后,清华大学长聘教授汪玉博士做了《基于RRAM的神经网络系统设计与探索》报告。

因为CPU和GPU效率不高,因此要把神经网络应用于更广泛的应用,需要定制硬件。FPGA可以成为神经网络加速的理想平台,因为它是可编程的,与通用处理器相比可以实现更高的能效。

然而,较长的开发周期和传统的FPGA加速性能不足使其无法广泛使用。汪玉介绍了一个完整的设计流程,采用深度压缩和数据量化来利用算法中的冗余并降低计算和存储器复杂性,以实现快速部署和高能效,以加速FPGA上的神经网络。

另一方面,以存算一体化为基础(例如基于RRAM等非易失存器件)的神经网络计算平台设计成为发展方向,报告还介绍了基于RRAM的深度学习处理系统设计,探讨进一步提高能效的机遇与挑战。

RRAM是电阻网络的向量和向量的运算,只要一通电,数据流过,就会出结果,不需要搬数据,所以非常漂亮的一种方式。

但是这种方式真的是好吗?最近几年,这种方式能做出来的芯片都还非常的小。

汪玉团队针对存算一体化系统中的一些关键问题展开研究,特别是数模混合系统的接口设计优化、如何用不可靠的器件设计可靠系统等方面开展大量研究。

接下来,中科院半导体所研究员、中国科学院大学教授吴南健做了《人工视觉系统芯片研究及发展趋势》报告。

人工视觉系统芯片是单芯片集成视觉传感器和视觉并行处理器,能够模仿人类视觉系统的信息并行获取和处理,可实现高速图像获取、传输、学习、记忆、识别和控制。

涉及到的核心技术涉及三点:视觉呈现、视觉信息处理、集成技术。

人工视觉芯片是典型的边缘计算,要求实时处理能力强、功耗低、体积小,非常难设计,但应用前景广泛,吴教授认为,3、4年内应该会大规模应用

根据视觉获取和处理方法不同,人工视觉系统芯片分为帧驱动和事件驱动视觉芯片。以下为两种芯片的比较:

其中,事件驱动视觉芯片能够检测空间和事件光变化,以事件方式获取信号、处理信号和输出,相对帧驱动视觉芯片,事件驱动视觉芯片还处于起步阶段。

目前,国际上的人工视觉系统芯片最新成果对比:

目前人工智能是计算速度与数据规模提升的结果,机器自我意识何时觉醒?

中国科学院自动化研究所研究员、类脑智能研究中心副主任曾毅做了《类脑智能:从类脑认知引擎到有意识的生命体》的报告。

类脑智能是通过受脑多尺度结构与计算机制启发,探索人类智能本质与人类水平人工智能的重要途径之一。报告从人类的心智是否能够在计算系统中重现等科学问题出发,从人工智能、神经科学、认知科学融合的视角介绍类脑认知引的研究进展。

曾毅认为,目前的人工智能是计算速度与数据规模的提升。在曾毅看来,数据智能与机器智能并不是真正的智能,它们只是看上去很像智能的信息处理,与真正探索智能本质,基于机制的人工智能还相去甚远。

他的演讲着重介绍课题组在大规模多尺度脑神经网络建模与模拟、类脑自主学习与决策及其在无人、机器人领域的应用方面。在此基融上,将进一步探讨机器自我意识的初步探索并展望机器意识与人机社会的未来。

四川大学教授唐华锦教授做了《神经形态计算进展》报告。

与传统人工智能方法不同,神经形态计算主要受神经科学发展推动,是建立在大脑神经电路结构和神经信息处理与神经脉冲计算原理上的新型计算模式,并最终以神经形态硬件方式来实现仿脑的认知计算与低功耗运算。

虽然在神经元和突触层级神经科学已经取得了很大的进展,但神经元之间如何通过网络连接取得复杂认知功能仍然缺乏了解。

唐华锦教授从神经形态认知计算领域需要解决的主要问题出发,介绍如下几个方面内容:神经信息编码、突触可望性与学习算法,以及集成编码与学习的系统模型,并讨论神经形态计算领域的最新进展及展望。

随后,中科院计算所副研究员赵地做了《神经形态计算与医学影像分析》报告。

心电信号检测与分析是心脏疾病患者的重要保障。现有的方法包括机器学习与一维深度学习。然而,现有的方法难以满足心脏疾病患者全天候实时检测高准确率和低能耗的要求。

赵地的研究基于脉冲神经网络,将心电信号的时空特性直接编码到尖峰序到中,通过基于 Izhikevich尖峰神经元的网路进行特征提取,并采用时间以来可塑性(STDP)算法进行优化,对心电信号指示的疾病进行识别。实验结果表明,通过基于类脑计算的算法分析公共ECG数据库和内部临床试验,准确率与能耗远优于现有的方法。

工业智能化

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181222B0HPJM00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券