首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

微服务架构,多“微”才合适?

以前的文章讨论过《

互联网架构,究竟为啥要做服务化?

》,随着数据量、并发量、业务复杂度的增长,互联网架构会出现以下问题:

代码到处拷贝

底层复杂性扩散

基础库(so/jar/dll)耦合

SQL质量得不到保障,业务相互影响

数据库耦合

“服务化”是一个很好的解决上述痛点的方案。

那么问题来了,微服务架构多“微”才合适?

行业内有这样四类常见实践。

实践一:统一服务层

这是最粗犷的玩法,所有基础数据,都通过一个统一的服务来进行访问。

在业务不是特别复杂的时候,这不失为一个快速分层的方案,一旦业务变得复杂,服务层会变得非常重,成为耦合焦点。

以微信场景为例,假设通过一个通用的服务层来访问基础数据。

则只有一个统一的服务层,用户信息,好友信息,群组信息,消息信息都通过这个服务层来访问。

实践二:一个子业务一个服务

如果所有的数据访问都通过一个服务层来访问,那么一行代码出故障,就将影响整个服务,所以更合理的做法是在服务层进行拆分。

服务层架构如何细分?

垂直拆分是个好的方案,将子业务分拆,那么微信的服务化架构或许会变成下面的样子:

用户相关的子业务,访问user服务

好友相关的子业务,访问friend服务

群组相关的子业务,访问group服务

消息相关的子业务,访问msg服务

这样的话,一个服务出问题也不会影响其他服务,与此同时,数据层也按照业务垂直拆分开了。

服务粒度变细之后,出现一个新的问题,业务与服务的连接关系变复杂了,有什么好的优化方案么?

常见的,加入一个高可用服务分发层(Service Mesh不就是这么干的么),并在协议设计时加入服务号,可以减少蜘蛛网状的依赖关系:

调用方依赖分发层,传入服务号

分发层依赖服务层,通过服务号参数分发

实践三:一个数据库对应一个服务

数据访问服务最初是从DAO/ORM的数据访问需求过来的,所以有些公司也有一个数据库一个服务的玩法。

一个子业务对应一个服务的玩法如下图:

服务层,整个群业务是一个服务

存储层,实际可能对应了群信息、群成员、群消息等多个数据表

拆分成一个数据库一个服务,则架构会变成下面的样子:

群信息库,群成员库,群消息库之间也解耦开,不会相互影响。

实践四,一个接口对应一个服务

微服务架构中,更极端的,甚至一个接口对应一个微服务。

这样的话,架构就从:

进化为:

修改群信息服务

增加群信息服务

获取群信息服务

多个服务操纵同一个数据库,任何接口服务出问题,都不会影响其他接口服务。使用这种方案的,一般与开发语言特性结合比较紧密,例如golang。

上文中谈到的服务化与微服务,不同粒度的服务化各有什么优劣呢?

总的来说,细粒度拆分的优点有:

服务都能够独立部署

扩容和缩容方便,有利于提高资源利用率

拆得越细,耦合相对会减小

拆得越细,容错相对会更好,一个服务出问题不影响其他服务

扩展性更好

细粒度拆分的不足也很明显:

拆得越细,系统越复杂

系统之间的依赖关系也更复杂

运维复杂度提升

监控更加复杂

出问题时定位问题更难

互联公司,以“子业务”作为微服务粒度是最常用,订单服务,用户服务,支付服务等等。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20190221B19NOA00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券