我用70行Go语言代码击败了 C 语言

在文章《我用 80 行 Haskell 代码击败了 C 语言》发布之后,网络上掀起了一阵讨论热潮,并且很快变成了一场试图用不同语言打败可敬的wc的游戏:

今天,我们将会使用Go来打败wc。作为一个具有出色同步原语的编译语言,要达到与C相当的性能应该是毫无困难的。

虽然wc同样可以从stdin中读取,处理非ASCII文字编码,解析命令行flag(帮助页面),但是这里将不做描述。相反,就像之前的文章提到的一样,我们将会尽力将实现简单化。

这篇文章的源代码可以在这里找到。

测试和对比

我们将使用GNU时间工具来对比运行时间和最大驻留集大小。

$ /usr/bin/time -f "%es %MKB" wc test.txt

我们会使用和最初文章相同的wc版本,由gcc 9.2.1和 -O3 编译。对于我们自己的实现,我们会使用 go 1.13.4版本(我也尝试过gccgo,但是结果并不是非常理想)。我们的所有测试都是在以下配置上进行的:

  • Intel Core i5-6200U @ 2.30 GHz (2 physical cores, 4 threads)
  • 4+4 GB RAM @ 2133 MHz
  • 240 GB M.2 SSD
  • Fedora 31

为了公平对比,所有的实现都会使用一个16 KB的buffer读取两个us-ascii编码的文本文件(一个100 MB,一个1 GB)的输入。

一个朴素的方法

解析参数很简单,我们只需要文件路径:

if len(os.Args) < 2 {
    panic("no file path specified")
}
filePath := os.Args[1]
file, err := os.Open(filePath)
if err != nil {
    panic(err)
}
defer file.Close()

我们会按字节顺序遍历文本来跟踪状态。幸运的是,我们目前只需要两种状态:

  • 前一字节是空格
  • 前一字节不是空格

当从空格字符遍历到非空格的字符时,我们会增加字数计数。这种方式允许我们能够直接读取字节流,从而保持较低的内存消耗。

const bufferSize = 16 * 1024
reader := bufio.NewReaderSize(file, bufferSize)
lineCount := 0
wordCount := 0
byteCount := 0
prevByteIsSpace := true
for {
    b, err := reader.ReadByte()
    if err != nil {
        if err == io.EOF {
            break
        } else {
            panic(err)
        }
    }
    byteCount++
    switch b {
    case '\n':
        lineCount++
        prevByteIsSpace = true
    case ' ', '\t', '\r', '\v', '\f':
        prevByteIsSpace = true
    default:
        if prevByteIsSpace {
            wordCount++
            prevByteIsSpace = false
        }
    }
}

我们会用本地的 println() 函数来显示结果。在我的测试中,导入fmt库就导致可执行文件大小增加了大约400KB!

println(lineCount, wordCount, byteCount, file.Name())

运行之后:

输入大小

运行时间

最大内存

wc

100 MB

0.58 秒

2052 KB

wc(朴素版)

100 MB

0.77 秒

1416 KB

wc

1 GB

5.56 秒

2036 KB

wc(朴素版)

1 GB

7.69 秒

1416 KB

好消息是,我们的首次尝试已经让我们在性能上接近C了。而在内存使用方面,我们实际上做的比C还要好!

分割输入

虽说缓存I/O的读取对于提高性能至关重要,但调用 ReadByte() 并在循环中查找错误会带来很多不必要的开销。为了避免这种情况的发生,我们可以手动缓存我们的读取调用,而不是依赖bufio.Reader。

为了做到这点,我们将输入分割到可以分别处理的多个缓冲chunk中。幸运的是,我们只需要知道前一chunk中的最后一个字符是否是空格,就可以处理当前chunk。

接下来是一些功能函数:

type Chunk struct {
    PrevCharIsSpace bool
    Buffer          []byte
}
type Count struct {
    LineCount int
    WordCount int
}
func GetCount(chunk Chunk) Count {
    count := Count{}
    prevCharIsSpace := chunk.PrevCharIsSpace
    for _, b := range chunk.Buffer {
        switch b {
        case '\n':
            count.LineCount++
            prevCharIsSpace = true
        case ' ', '\t', '\r', '\v', '\f':
            prevCharIsSpace = true
        default:
            if prevCharIsSpace {
                prevCharIsSpace = false
                count.WordCount++
            }
        }
    }
    return count
}
func IsSpace(b byte) bool {
    return b == ' ' || b == '\t' || b == '\n' || b == '\r' || b == '\v' || b == '\f'
}

现在就可以分割输入到 Chunks 中,并将其返回到 GetCount 函数:

totalCount := Count{}
lastCharIsSpace := true
const bufferSize = 16 * 1024
buffer := make([]byte, bufferSize)
for {
    bytes, err := file.Read(buffer)
    if err != nil {
        if err == io.EOF {
            break
        } else {
            panic(err)
        }
    }
    count := GetCount(Chunk{lastCharIsSpace, buffer[:bytes]})
    lastCharIsSpace = IsSpace(buffer[bytes-1])
    totalCount.LineCount += count.LineCount
    totalCount.WordCount += count.WordCount
}

想要得到字节统计,我们可以用一个系统调用来检查文件大小:

fileStat, err := file.Stat()
if err != nil {
    panic(err)
}
byteCount := fileStat.Size()

完成之后,可以来看看他们的表现如何:

输入大小

运行时间

最大内存

wc

100 MB

0.58 秒

2052 KB

wc(缓存块)

100 MB

0.34 秒

1404 KB

wc

1 GB

5.56 秒

2036 KB

wc(缓存块)

1 GB

3.31 秒

1416 KB

看起来我们在这两个方面都超过了wc,而且这还是没有并行化程序的情况下。tokei的报告显示该程序只有70行代码!

并行化

不得不说,并行化的wc是有点杀鸡用牛刀了,但是先让我们看看我们能走多远。原文章是并行读取输入的文件;尽管这改善了运行时间,作者同样承认由并行带来的这种性能提升很可能会仅限于某些类型的存储,在其他类型上甚至会带来负面影响。

我们实现的目标是代码可以在所有的设备上都表现良好,所以我们并不会采取原文章中方案。我们会创建两个通道,chunks和counts。每个 Worker 会读取并处理从chunks中读取到的数据,直到通道关闭,然后将结果写入counts。

func ChunkCounter(chunks <-chan Chunk, counts chan<- Count) {
    totalCount := Count{}
    for {
        chunk, ok := <-chunks
        if !ok {
            break
        }
        count := GetCount(chunk)
        totalCount.LineCount += count.LineCount
        totalCount.WordCount += count.WordCount
    }
    counts <- totalCount
}

每个逻辑CPU内核都会被分配到一个Worker:

numWorkers := runtime.NumCPU()
chunks := make(chan Chunk)
counts := make(chan Count)
for i := 0; i < numWorkers; i++ {
    go ChunkCounter(chunks, counts)
}

进入循环,从磁盘中读取并将任务分给每个 Worker:

const bufferSize = 16 * 1024
lastCharIsSpace := true
for {
    buffer := make([]byte, bufferSize)
    bytes, err := file.Read(buffer)
    if err != nil {
        if err == io.EOF {
            break
        } else {
            panic(err)
        }
    }
    chunks <- Chunk{lastCharIsSpace, buffer[:bytes]}
    lastCharIsSpace = IsSpace(buffer[bytes-1])
}
close(chunks)

完成这一步之后,就可以简单的汇总每个 Worker 的计数:

totalCount := Count{}
for i := 0; i < numWorkers; i++ {
    count := <-counts
    totalCount.LineCount += count.LineCount
    totalCount.WordCount += count.WordCount
}
close(counts)

运行之后,和之前的结果进行比较:

输入大小

运行时间

最大内存

wc

100 MB

0.58 秒

2052 KB

wc (通道)

100 MB

0.27 秒

6644 KB

wc

1 GB

5.56 秒

2036 KB

wc (通道)

1 GB

2.22 秒

6752 KB

wc的速度现在要快得多,但是内存使用率则被大大地降低了。这是因为输入循环在每次的迭代中都要分配内存。通道是一个共享内存的一个绝佳抽象,但是对于部分用例,只要不使用通道就可以极大幅度地提高性能。

优化后的并行

这部分中我们允许每个 Worker 读取文件,并使用 sync.Mutex 来保证读取行为不会同时发生。我们可以创建一个新的 struct 来处理这一部分:

type FileReader struct {
    File            *os.File
    LastCharIsSpace bool
    mutex           sync.Mutex
}
func (fileReader *FileReader) ReadChunk(buffer []byte) (Chunk, error) {
    fileReader.mutex.Lock()
    defer fileReader.mutex.Unlock()
    bytes, err := fileReader.File.Read(buffer)
    if err != nil {
        return Chunk{}, err
    }
    chunk := Chunk{fileReader.LastCharIsSpace, buffer[:bytes]}
    fileReader.LastCharIsSpace = IsSpace(buffer[bytes-1])
    return chunk, nil
}

重写 Worker 函数使其直接读取文件:

func FileReaderCounter(fileReader *FileReader, counts chan Count) {
    const bufferSize = 16 * 1024
    buffer := make([]byte, bufferSize)
    totalCount := Count{}
    for {
        chunk, err := fileReader.ReadChunk(buffer)
        if err != nil {
            if err == io.EOF {
                break
            } else {
                panic(err)
            }
        }
        count := GetCount(chunk)
        totalCount.LineCount += count.LineCount
        totalCount.WordCount += count.WordCount
    }
    counts <- totalCount
}

和之前一样,将这些 Worker 分配给CPU内核:

fileReader := &FileReader{
    File:            file,
    LastCharIsSpace: true,
}
counts := make(chan Count)
for i := 0; i < numWorkers; i++ {
    go FileReaderCounter(fileReader, counts)
}
totalCount := Count{}
for i := 0; i < numWorkers; i++ {
    count := <-counts
    totalCount.LineCount += count.LineCount
    totalCount.WordCount += count.WordCount
}
close(counts)

现在来看看性能如何:

输入大小

运行时间

最大内存

wc

100 MB

0.58 秒

2052 KB

wc (互斥量)

100 MB

0.12 秒

1580 KB

wc

1 GB

5.56 秒

2036 KB

wc (互斥量)

1 GB

1.21 秒

1576 KB

并行实现的速度是 wc 的4.5倍以上,并且也降低了内存的消耗。这很重要,特别在考虑到Go是一种垃圾收集语言的时候。

结论

本文并没有在暗示Go要比C好,但作者希望能它能证明Go可以代替C作为系统编程语言。

原文链接

https://ajeetdsouza.github.io/blog/posts/beating-c-with-70-lines-of-go/

  • 发表于:
  • 本文为 InfoQ 中文站特供稿件
  • 首发地址https://www.infoq.cn/article/YvIgiyaFJLkFYlZ5hUp0

扫码关注云+社区

领取腾讯云代金券

玩转腾讯云 有奖征文活动