今天格物斯坦小坦克来跟您一起聊聊人工神经网络概念,深受科技人才追捧,很多业内人士认为,人工智能发展的终极路线,离不开在硬件上模拟人脑的“电子大脑”。因此找到合适的材料,构建出可以模拟人脑运行的类脑器件,以及由这些器件集成的硬件类脑系统,是人工智能能否实现像人脑那样“灵光”的关键。
传统的机器视觉系统需要先探测再处理,使用的图像传感器在探测目标图像的同时会产生大量冗余信息,此类信息通过有限的带宽再传输至计算机,会导致较大的时间延迟和较高的功耗。人眼不仅可以同时探测、处理信息,而且整体功耗极低。
光透过瞳孔入射到视网膜上后,感光细胞将入射光转换为电学信号,流经双极细胞,电学信号会得到一定的预加工和处理。加工后的信息仅仅保留原图像的主要特征,再传输至大脑皮层进行进一步的图像处理和理解。通过这种方式,视网膜在一定程度上实现了信息探测和处理的同步进行。
二维材料具有原子的尺寸和有别于传统三维材料的全新物理性质,而且对外界刺激响应灵敏。更为有趣的是,二维材料具有非常好的垂直扩展性,可以像‘搭乐高’一样,在原子世界里,将性质迥异的多种二维材料按照不同的顺序堆垛,制造出自然界并不存在的新型结构材料。
在传统的类脑芯片中,需要耗费超过10个晶体管,才能模拟生物突触的功能,在很大程度上会限制传统类脑芯片的集成度。但研究团队设计的可重构突触电路,仅需利用3个ETH 器件和一个电容元件。
通过设计电场可调的ETH器件,在确保器件与电路都具有可重构功能的同时,可以大幅降低电路晶体管资源的消耗。“一方面有利于芯片的小型化和功能密度的提升,另一方面也能降低芯片的整体能耗,有望助力物联网、边缘计算、人工智能等应用的快速发展。”
领取专属 10元无门槛券
私享最新 技术干货