干货!详细解读车牌识别原理、工作流程及其在停车场中的应用

一、车牌识别相机流程剖解

车牌识别相机作为智慧停车的核心技术,智能化多媒体网络车牌识别系统广泛应用在过往车辆自动登记、验证,公路收费,车辆安全核查,小区、停车场管理等方面。

车牌识别相机工作流程

车牌识别相机采用视频实时触发方式进行检测抓拍,能够自动侦测、准确识别及验证行驶或停泊中车辆的整车车牌号码。可对已抓拍图像与数据库资料及时进行比对,当发现应拦截车辆时,车牌识别相机能在本地机和中心机上及时报警。车牌识别相机采用先进的模糊图像处理技术,通过程序能很好的实现对于车牌的整体倾斜、车牌的文字倾斜、车牌的污损和模糊等的处理,将人眼都很难辨别的车牌号识别出来。

车牌识别相机的流程可分为车牌定位、车牌预处理、字符分割和字符识别四个主要核心步骤。

二、车牌识别相机实现功能和技术特点

准确识别不同地区及各种类型的车牌号码。

车牌识别相机采用图像自动触发方式,不需要其他外在触发机制。

对已抓拍图像能与数据库资料及时进行比对,当发现应拦截车辆时,在本地机和中心机上及时。

内置的数据库管理软件能存储、搜索及整理车辆资料,能自动备份数据并完成统计报告。

在网络的环境下实现各地的数据同步,可实时监控前端系统的运行状况。

对运动速度在180公里/小时以下的汽车车牌进行自动识别。

在良好光照条件下,车牌识别相机识别率不低于96%,在阴雨天、夜间人工光照条件下,车牌识别率不低于90%。车牌识别相机能够识别的车牌类型包括:普通民用汽车车牌、军用汽车车牌(含武警车牌)、警用汽车车牌、新能源车牌、单双层黄牌等等。

车牌识别相机抓拍图像的时间小于0.03秒,识别图像的时间小于0.2秒。

车牌识别相机适应全天候条件下工作。

三、停车场车牌识别应用

一个完整的停车场车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。当车辆检测部分检测到车辆到达时触发车牌识别相机,采集当前的视频图像。车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。

车牌识别系统拓扑图

(一)车辆检测

车辆检测可以采用埋地线圈检测、红外检测、雷达检测、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。

具备视频车辆检测功能的车牌识别相机,首先对视频信号中的一帧(场)的信号进行图像采集,数字化,得到对应的数字图像;然后对其进行分析,判断其中是否有车辆;若认为有车辆通行,则进入到下一步进行车牌识别;否则继续采集视频信号,进行处理。

车牌识别相机进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法正确检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与车牌自动识别相结合具备一定的技术难度。

(二)车牌号码、颜色识别

为了进行车牌识别,需要以下几个基本的步骤:

车牌定位,定位图片中的车牌位置;

车牌字符分割,把车牌中的字符分割出来;

车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。

车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。

1、车牌定位

自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。首先车牌识别相机对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。

2、车牌字符分割

完成车牌区域的定位后,再将车牌区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足车牌的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。

3、车牌字符识别

字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。

车牌识别算法原理

实际应用中,车牌识别相机的识别率与车牌质量和拍摄质量密切相关。车牌质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、车牌被遮挡、车牌倾斜、高亮反光、多车牌、假车牌等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断的完善识别算法,还应该想办法克服各种光照条件,使采集到的图像最利于识别。

  • 发表于:
  • 原文链接:http://kuaibao.qq.com/s/20171227A01JQI00?refer=cp_1026

相关快讯

扫码关注云+社区