Golang 反射性能优化

Golang的反射最为人诟病的就是它极差的性能,接下来我们尝试优化它的性能。

如果我们使用正常的流程来创建一个对象,将会是如下的代码片段:

type People struct {
    Age   int
    Name  string
}

func New() *People {
    return &People{
        Age:   18,
        Name:  "shiina",
    }
}

以上的代码非常好读,但是如果我们要开发一款框架,接收的类型非常有可能是动态的、不确定的,那么就会使用到反射(Reflect)功能,使用反射来创建一个如上的Person对象大概是如下的代码片段:

func NewUseReflect() interface{} {
    var p People
    t := reflect.TypeOf(p)
    v := reflect.New(t)
    v.Elem().Field(0).Set(reflect.ValueOf(18))
    v.Elem().Field(1).Set(reflect.ValueOf("shiina"))
    return v.Interface()
}

如上是一段普通的反射代码,既然大家都说Go的反射性能极差,那么我们就来自己看一下它的性能和上一个我们正常创建Person对象比性能差了多少。

简单的性能测试

让我们先用Go自带的go bench来分析一下它的性能

func BenchmarkNew(b *testing.B) {
    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        New()
    }
}

func BenchmarkNewUseReflect(b *testing.B) {
    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        NewUseReflect()
    }
}

我们得到的测试结果如下:

BenchmarkNew
BenchmarkNew-16                 1000000000           1.55 ns/op        0 B/op          0 allocs/op
BenchmarkNewUseReflect
BenchmarkNewUseReflect-16        4787185           248 ns/op          64 B/op          2 allocs/op

我们能够发现使用反射的耗时是不使用的160倍左右

性能损耗的猜测

那么反射创建对象,主要的性能损耗在哪里呢?我们先进行一个实验:

并且当我们增加更多的结构体成员变量,比如增加两个string类型的成员变量,进行一次性能测试,然后再去掉所有的成员变量,进行一次性能测试。

  • 四个成员变量:
type People struct {
    Age   int
    Name  string
    Test1 string
    Test2 string
}

func New() interface{} {
    return &People{
        Age:  18,
        Name: "shiina",
    Test1: "test1",
    Test2: "test2",
    }
}

func NewUseReflect() interface{} {
    var p People
    t := reflect.TypeOf(p)
    v := reflect.New(t)
    v.Elem().Field(0).Set(reflect.ValueOf(18))
    v.Elem().Field(1).Set(reflect.ValueOf("shiina"))
    v.Elem().Field(2).Set(reflect.ValueOf("test1"))
    v.Elem().Field(3).Set(reflect.ValueOf("test2"))
    return v.Interface()
}

——————————————————————————————————————————
BenchmarkNew
BenchmarkNew-16                 1000000000           1.12 ns/op        0 B/op          0 allocs/op
BenchmarkNewUseReflect
BenchmarkNewUseReflect-16        3334735           366 ns/op         128 B/op          2 allocs/op
  • 无成员变量:
type People struct{}

func New() interface{} {
    return &People{}
}

func NewUseReflect() interface{} {
    var p People
    t := reflect.TypeOf(p)
    v := reflect.New(t)
    return v.Interface()
}

——————————————————————————————————————————
BenchmarkNew
BenchmarkNew-16                 1000000000           1.32 ns/op        0 B/op          0 allocs/op
BenchmarkNewUseReflect
BenchmarkNewUseReflect-16       17362648            62.3 ns/op         0 B/op          0 allocs/op

我们猜测,反射性能的损耗具体分为两个部分,一个部分是reflect.New(),另一个部分是value.Field().Set()

这时候我们可以使用Go原生自带的性能分析工具pprof来分析一下它们的主要耗时,来验证我们的猜测。

我们对四个成员变量测试用例使用pprof

# 生成测试数据
kieranhu@KIERANHU-MC0 ~/Downloads> go test -bench=. -benchmem -memprofile memprofile.out -cpuprofile profile.out
# 分析测试数据
kieranhu@KIERANHU-MC0 ~/Downloads> go tool pprof ./profile.out
Type: cpu
Time: Apr 24, 2020 at 7:38pm (CST)
Duration: 2.02s, Total samples = 1.92s (94.91%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) list NewUseReflect

我们使用pprof得到了该函数的主要耗时,可以发现与我们的猜测无误,耗时主要分为三个部分:reflect.TypeOf(),reflect.New(),value.Field().Set(),其中我们可以把reflect.TypeOf()放到函数外,在初始化的时候生成,接下来我们主要关注value.Fidle().Set()

ROUTINE ======================== begonia.NewUseReflect in /Users/kieranhu/go/src/begonia/reflect_test.go
      60ms      2.17s (flat, cum) 64.97% of Total
         .          .     29:
      10ms       10ms     30:func NewUseReflect() interface{} {
         .          .     31:   var p People
      10ms      580ms     32:   t := reflect.TypeOf(p)
         .      440ms     33:   v := reflect.New(t)
      10ms      220ms     34:   v.Elem().Field(0).Set(reflect.ValueOf(18))
      10ms      250ms     35:   v.Elem().Field(1).Set(reflect.ValueOf("shiina"))
         .      280ms     36:   v.Elem().Field(2).Set(reflect.ValueOf("test1"))
      10ms      220ms     37:   v.Elem().Field(3).Set(reflect.ValueOf("test2"))
      10ms      170ms     38:   return v.Interface()
         .          .     39:}
         .          .     40:

干掉 value.Field().Set()

我们先从怎么不用xxx=xxx进行赋值说起。

unsafe

Go中有一个包叫unsafe,顾名思义,它不安全,因为它可以直接操作内存。我们可以使用unsafe,来对一个字符串进行赋值,具体的步骤大概如下:

  • 获得该字符串的地址
  • 对该地址赋值

我们通过四行就可以完成上面的操作:

    str := ""
    // 获得该字符串的地址
    p := uintptr(unsafe.Pointer(&str))
    // 在该地址上赋值
    *(*string)(unsafe.Pointer(p))="test"
    fmt.Println(str)
-----------------
test

当我们能够使用unsafe来操作内存时,就可以进一步尝试操作结构体了。

操作结构体

我们通过上述代码,得到一个结论:

  • 只要我们知道内存地址,就可以操作任意变量。

接下来我们可以尝试去操作结构体了。

Go的结构体有以下的两个特点:

  • 结构体的成员变量是顺序存储的
  • 结构体第一个成员变量的地址就是该结构体的地址。

根据以上两点,以及刚刚我们得到的结论,我们可能够得到以下的方法,来干掉value.Field().Set()

  • 获得结构体地址
  • 获得结构体内成员变量的偏移量
  • 得到结构体成员变量地址
  • 修改变量值

我们逐个来获得获得。

Gointerface类型是以这样的形式保存的:

// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
    typ  *rtype
    word unsafe.Pointer
}

这个结构体的定义可以在reflect/Value.go找到。

在这个结构体中typ是该interface的具体类型,word指针保存了指向结构体的地址。

现在我们了解了interface的存储类型后,我们只需要将一个空接口interface{}转换为emptyInterface类型,然后得到其中的word,就可以拿到结构体的地址了,即解决了第一步。

结构体类型强转

先用下面这段代码示例,来解决一下不同结构体之间的转换:

type Test1 struct {
    Test1 string
}

type Test2 struct {
    test2 string
}

func TestStruct(t *testing.T) {
    t1 := Test1{
        Test1: "hello",
    }

    t2 := *(*Test2)(unsafe.Pointer(&t1))
    fmt.Println(t2)
}
----------------
{hello}

然后我们更换两个结构体中的成员变量类型,再尝试一下:

type Test1 struct {
    a int32
    b []byte
}

type Test2 struct {
    b int16
    a string
}

func TestStruct(t *testing.T) {
    t1 := Test1{
        a:1,
        b:[]byte("asdasd"),
    }

    t2 := *(*Test2)(unsafe.Pointer(&t1))
    fmt.Println(t2)
}
----------------
{1 asdasd}

我们可以发现,后面这次尝试两个结构体的类型完全不同,但是其中int32和int16的存储方式相同,[]byte和string的存储方式相同,我们可以得出一个简单的结论:

  • 不论类型签名是否相同,只要底层存储方式相同,我们就可以强制转换,并且可以突破私有成员变量限制。

通过上面我们得到的结论,可以将reflect/value.go里面的emptyInterface类型复制出来。然后我们对interface强转并取到word,就可以拿到结构体的地址了。

type emptyInterface struct {
    typ  *struct{}
    word unsafe.Pointer
}

func TestStruct(t *testing.T) {
    var in interface{}
    in = People{
        Age:   18,
        Name:  "shiina",
        Test1: "test1",
        Test2: "test2",
    }

    t2 := uintptr(((*emptyInterface)(unsafe.Pointer(&in))).word)
    *(*int)(unsafe.Pointer(t2))=111
    fmt.Println(in)
}
---------------
{111 shiina test1 test2}

我们获取了结构体地址后,根据结构体地址,修改了结构体内第一个成员变量的值,接下来我们开始进行第二步:得到结构体成员变量的偏移量

我们可以通过反射,来轻松的获得每一个成员变量的偏移量,进而根据结构体的地址,获得每一个成员变量的地址。

当我们获得了每一个成员变量的地址后,就可以很轻易的修改它了。

var in interface{}
    in = People{
        Age:   18,
        Name:  "shiina",
        Test1: "test1",
        Test2: "test2",
    }

    typeP := reflect.TypeOf(in)
    offset1 := typeP.Field(1).Offset
    offset2 := typeP.Field(2).Offset
    offset3 := typeP.Field(3).Offset

    t2 := uintptr(((*emptyInterface)(unsafe.Pointer(&in))).word)

    *(*int)(unsafe.Pointer(t2)) = 111
    *(*string)(unsafe.Pointer(t2 + offset1)) = "hello"
    *(*string)(unsafe.Pointer(t2 + offset2)) = "hello1"
    *(*string)(unsafe.Pointer(t2 + offset3)) = "hello2"
    fmt.Println(in)
---------------------
{111 hello hello1 hello2}

我们刚刚成功的利用地址修改了结构体的成员变量,没有使用到value.Field().Set()。接下来我们利用刚刚的技巧,修改反射函数,并再次进行性能测试。

我们保留以前的反射函数做对比,新建一个NewQuickReflect()来使用这种技巧创建对象:

var (
    offset1 uintptr
    offset2 uintptr
    offset3 uintptr
    p       People
    t       = reflect.TypeOf(p)
)

func init() {
    offset1 = t.Field(1).Offset
    offset2 = t.Field(2).Offset
    offset3 = t.Field(3).Offset
}

type People struct {
    Age   int
    Name  string
    Test1 string
    Test2 string
}

type emptyInterface struct {
    typ  *struct{}
    word unsafe.Pointer
}

func New() *People {
    return &People{
        Age:  18,
        Name: "shiina",
    Test1: "test1",
        Test2: "test2",
    }
}

func NewUseReflect() interface{} {
    v := reflect.New(t)

    v.Elem().Field(0).Set(reflect.ValueOf(18))
    v.Elem().Field(1).Set(reflect.ValueOf("shiina"))
    v.Elem().Field(2).Set(reflect.ValueOf("test1"))
    v.Elem().Field(3).Set(reflect.ValueOf("test2"))
    return v.Interface()
}

func NewQuickReflect() interface{} {
    v := reflect.New(t)

    p := v.Interface()
    ptr0 := uintptr((*emptyInterface)(unsafe.Pointer(&p)).word)
    ptr1 := ptr0 + offset1
    ptr2 := ptr0 + offset2
    ptr3 := ptr0 + offset3
    *((*int)(unsafe.Pointer(ptr0))) = 18
    *((*string)(unsafe.Pointer(ptr1))) = "shiina"
    *((*string)(unsafe.Pointer(ptr2))) = "test1"
    *((*string)(unsafe.Pointer(ptr3))) = "test2"
    return p
}

func BenchmarkNew(b *testing.B) {
    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        New()
    }
}

func BenchmarkNewUseReflect(b *testing.B) {
    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        NewUseReflect()
    }
}

func BenchmarkNewQuickReflect(b *testing.B) {
    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        NewQuickReflect()
    }
}

运行后我们的测试结果:

BenchmarkNew
BenchmarkNew-16                 1000000000           1.34 ns/op        0 B/op          0 allocs/op
BenchmarkNewUseReflect
BenchmarkNewUseReflect-16        3715539           276 ns/op          64 B/op          1 allocs/op
BenchmarkNewQuickReflect
BenchmarkNewQuickReflect-16     12772573            94.7 ns/op        64 B/op          1 allocs/op

可以看出我们的性能从原生205倍提升到了70倍,并且这个优化的程度将会随着结构体成员变量越多而越明显。

我们对新写的NewQuickReflect函数使用pprof分析一下,继续观察有没有可以优化的点。

ROUTINE ======================== begonia.NewQuickReflect in /Users/kieranhu/go/src/begonia/reflect_test.go
     120ms      1.07s (flat, cum) 28.53% of Total
         .          .     57:
         .          .     58:func NewQuickReflect() interface{} {
      40ms      800ms     59:   v := reflect.New(t)
         .          .     60:
         .      180ms     61:   p := v.Interface()
         .          .     62:   ptr0 := uintptr((*emptyInterface)(unsafe.Pointer(&p)).word)
      40ms       40ms     63:   ptr1 := ptr0 + offset1
      10ms       10ms     64:   ptr2 := ptr0 + offset2
         .          .     65:   ptr3 := ptr0 + offset3
      10ms       10ms     66:   *((*int)(unsafe.Pointer(ptr0))) = 18
         .       10ms     67:   *((*string)(unsafe.Pointer(ptr1))) = "shiina"
         .          .     68:   *((*string)(unsafe.Pointer(ptr2))) = "test1"
         .          .     69:   *((*string)(unsafe.Pointer(ptr3))) = "test2"
      20ms       20ms     70:   return p
         .          .     71:}
         .          .     72:

我们能够发现最多的损耗花在了reflect.New()上,我们着手尝试对它进行优化。

干掉 reflect.New()

池化

对于改善创建对象耗时来说,最简单的优化方式便是池化,我们利用sync.pool创建一个对象池,并且模拟对象池中资源充足的情况下的性能:

var (
  /**
  ...........
  **/
  pool sync.Pool
)
func init() {
  /**
  ............
  **/
    pool.New = func() interface{} {
        return reflect.New(t)
    }
    for i := 0; i < 100; i++ {
        pool.Put(reflect.New(t).Elem())
    }
}

/**
  ............
  **/

func NewQuickReflectWithPool() interface{} {
    p := pool.Get()

    ptr0 := uintptr((*emptyInterface)(unsafe.Pointer(&p)).word)
    ptr1 := ptr0 + offset1
    ptr2 := ptr0 + offset2
    ptr3 := ptr0 + offset3

    *((*int)(unsafe.Pointer(ptr0))) = 18
    *((*string)(unsafe.Pointer(ptr1))) = "shiina"
    *((*string)(unsafe.Pointer(ptr2))) = "test1"
    *((*string)(unsafe.Pointer(ptr3))) = "test2"
    return p
}

func BenchmarkQuickReflectWithPool(b *testing.B) {
    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        obj := NewQuickReflectWithPool()
        pool.Put(obj)
    }
}

在上述这个用例中,我们一拿到这个对象几乎就立即放回了对象池,模拟的是对象池资源充足情况下的性能:

BenchmarkNew
BenchmarkNew-16                         1000000000           1.26 ns/op        0 B/op          0 allocs/op
BenchmarkNewUseReflect
BenchmarkNewUseReflect-16                5515128           226 ns/op          64 B/op          1 allocs/op
BenchmarkNewQuickReflect
BenchmarkNewQuickReflect-16             21561645            91.4 ns/op        64 B/op          1 allocs/op
BenchmarkQuickReflectWithPool
BenchmarkQuickReflectWithPool-16        40770750            55.6 ns/op         0 B/op          0 allocs/op

我们可以发现在对象池对象充足的情况下,没有了malloc带来的耗时,我们的性能从原生72倍提升到原生的44倍

但是当对象池不充足情况下,就没有这么可喜的效率了。

另一个思路

我们能够发现现在主要的耗时都在利用反射的创建对象上,这个时候我脑海里有一个思路:

在我们需要的是值类型(例如Person{}),而不是指针的时候(例如&Person)时,我们是不是可以利用Go的这个特性:

  • 值类型传递值而不是指针的时候会进行拷贝

来在使用反射的前提下,利用值传递特性获得一个原生级别对象拷贝?

如果不使用反射,已知类型的情况下会是如下的代码:

func TestStruct(t *testing.T) {
    p1 := People{}

    var p2 interface{}
    p2 = p1

    ptr0 := uintptr((*emptyInterface)(unsafe.Pointer(&p2)).word)
    ptr1 := ptr0 + offset1
    ptr2 := ptr0 + offset2
    ptr3 := ptr0 + offset3

    *((*int)(unsafe.Pointer(ptr0))) = 18
    *((*string)(unsafe.Pointer(ptr1))) = "shiina"
    *((*string)(unsafe.Pointer(ptr2))) = "test1"
    *((*string)(unsafe.Pointer(ptr3))) = "test2"

    fmt.Println(p1)
    fmt.Println(p2)
}
------------------------
{0   }
{18 shiina test1 test2}

我们可以看到,我们使用这样一个值传递的特性,得到了一份p1的拷贝

很可惜的是,当我们不能直接指定类型的时候,想象中这样场景一直实现不了,会直接修改原变量的值,最终我找到了这样的调用方法:

func TestNew(t *testing.T) {
    elemValue := reflect.New(reflect.TypeOf(People{})).Elem()
    p := elemValue.Interface()

    ptr0 := uintptr((*emptyInterface)(unsafe.Pointer(&p)).word)
    ptr1 := ptr0 + offset1
    ptr2 := ptr0 + offset2
    ptr3 := ptr0 + offset3

    *((*int)(unsafe.Pointer(ptr0))) = 18
    *((*string)(unsafe.Pointer(ptr1))) = "shiina"
    *((*string)(unsafe.Pointer(ptr2))) = "test1"
    *((*string)(unsafe.Pointer(ptr3))) = "test2"

    fmt.Println(p)
    fmt.Println(elemValue)
}
-------------------
{18 shiina test1 test2}
{0   }

每次elemValue.Interface()时都会拷贝一个新的对象,这是我们期待的结果,接下来我们将它和之前的池化等一起进行性能测试

BenchmarkNew
BenchmarkNew-16                         1000000000           1.83 ns/op        0 B/op          0 allocs/op
BenchmarkNewUseReflect
BenchmarkNewUseReflect-16                2992928           372 ns/op         128 B/op          2 allocs/op
BenchmarkNewQuickReflect
BenchmarkNewQuickReflect-16             12648523            98.7 ns/op        64 B/op          1 allocs/op
BenchmarkQuickReflectWithPool
BenchmarkQuickReflectWithPool-16        40309711            58.2 ns/op         0 B/op          0 allocs/op
BenchmarkNewWithElemReflect
BenchmarkNewWithElemReflect-16          12700314            89.0 ns/op        64 B/op          1 allocs/op

结果比较沮丧,我们仅提升了不到10ns,从53倍提升到48倍并且性能的提升也并不稳定

为此我们阅读reflect.New()elemValue.Interface()源码,发现了如下的片段:

  • reflect.New()
func New(typ Type) Value {
	if typ == nil {
		panic("reflect: New(nil)")
	}
	t := typ.(*rtype)
	ptr := unsafe_New(t)
	fl := flag(Ptr)
	return Value{t.ptrTo(), ptr, fl}
}
  • elemValue.Interface()
if v.flag&flagAddr != 0 {
   // TODO: pass safe boolean from valueInterface so
   // we don't need to copy if safe==true?
   c := unsafe_New(t)
   typedmemmove(t, c, ptr)
   ptr = c
}

reflect.New()的主要耗时都在这个unsafe_New()函数上,然而对于一个elemValueInterface()时,反射还是会调用unsafe_New()函数来创建一个新值。

当多次实验,性能测试之后,发现这种干掉reflect.New()的方式性能不够稳定,基本没有使用的必要。( T_T )

END

如上整个性能优化的从思路到实验,再到实现大概总共花了一周的空闲时间。越写越觉得我不像是在写Go而是在写c了。或许我应该让Go写的更像Go而不是想什么黑魔法来让Go更快(也更不安全)?很感谢需求不饱和让我还有摸鱼时间来研究这个(x

  • 发表于:
  • 本文为 InfoQ 中文站特供稿件
  • 首发地址https://www.infoq.cn/article/54c8443155808e3abbc558fc4
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券