学习
实践
活动
专区
工具
TVP
写文章

数据分析常用的分析方法

1、结构分析法:看整体的构成分布,逐级拆解。

2、分组分析法:按照某一个特定的维度来细化拆解。

3、对比分析法,同比、环比、同行业、同类别等。

4、时间序列趋势法:查看时间趋势。

5、相关性分析法:相关性、因果性。

分析模型

对于一些简单的模型通过常用的分析方法,确实是可以得到一些通用的结论,但是在实际的工作中,并没有单一的问题,往往是一些符合问题,因此需要考虑的方面也会增加:

需要解决的问题涉及那些维度的数据;

从数据分析师的角度而言,这个问题是有通用解法,还是需要重新研究。

从原始数据集到分析数据是否需要加工。

而所有的模型,都是为了更好的解决问题。

RFM分类模型

R(recency),最近一次消费时间,表示用户最后一次消费距离现在多的时间,时间越近,客户的价值越大。

F(frequency)消费频率,消费频率指在统计周期内用户的购买次数,频次越高,价值越大。

M(Monetary)消费金额:指在统计周期内消费的总金额,金额越大价值越高。

通过数据的标准化寄权重设置,为分类模型打分,比如餐馆的客单价,20块以下为普通用户,

20-30良好用户,40以上优秀用户,各项指标都可以使用这个方法进行标准化。

分支的界定,往往使用中位数法。

最近一次的消费时间,一般是周、或者月,结合业务情况。

该模型的本质是筛选头部的用户,重点进行运营。

AARRR增长模型,了解模型就行,实际落地还需要结合自己的业务。

A:获取A:当天活跃R:明天继续活跃R:提升收入R:提升自传播

模型的主要作用可以快速的明晰从那几个点去做增长,能够找到切入点。

5W2H通用模型

生活中的聊天就是围绕这些点来展开的,该模型可以有助于我们快速的确定一个问题。

用户生命周期模型

互联网行业往往可以跟踪用户的每个阶段,每个阶段都应该有不一样的运营策略,和发展方向,对于分析师来讲就是要及时的识别,

对模型有一些自己的理解,这样才能知道何时用,怎样用。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20201226A0EW7X00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

关注

腾讯云开发者公众号
10元无门槛代金券
洞察腾讯核心技术
剖析业界实践案例
腾讯云开发者公众号二维码

扫码关注腾讯云开发者

领取腾讯云代金券